Open Access
Issue
Med Sci (Paris)
Volume 39, Number 3, Mars 2023
Néphrologie pédiatrique : de grandes avancées et un futur rempli d’espoir
Page(s) 246 - 252
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2023029
Published online 21 March 2023
  1. Schell C, Huber TBThe Evolving Complexity of the Podocyte Cytoskeleton. J Am Soc Nephrol JASN 2017 ; 28 : 3166–3174. [CrossRef] [PubMed] [Google Scholar]
  2. Grahammer F, Wigge C, Schell C, et al. A flexible, multilayered protein scaffold maintains the slit in between glomerular podocytes. JCI Insight 2016; 1. [Google Scholar]
  3. Ahola H, Heikkilä E, Aström Eet al. A novel protein, densin, expressed by glomerular podocytes. J Am Soc Nephrol 2003 ; 14 : 1731–1737. [CrossRef] [PubMed] [Google Scholar]
  4. Beltran PJ, Bixby JL, Masters BAExpression of PTPRO during mouse development suggests involvement in axonogenesis and differentiation of NT-3 and NGF-dependent neurons. J Comp Neurol 2003 ; 456 : 384–395. [CrossRef] [PubMed] [Google Scholar]
  5. Mundel P, Heid HW, Mundel TMet al. Synaptopodin: an actin-associated protein in telencephalic dendrites and renal podocytes. J Cell Biol 1997 ; 139 : 193–204. [CrossRef] [PubMed] [Google Scholar]
  6. Weide T, Huber TBSignaling at the slit: podocytes chat by synaptic transmission. J Am Soc Nephrol 2009 ; 20 : 1862–1864. [CrossRef] [PubMed] [Google Scholar]
  7. Syntichaki P, Tavernarakis NGenetic models of mechanotransduction: the nematode Caenorhabditis elegans. Physiol Rev 2004 ; 84 : 1097–1153. [CrossRef] [PubMed] [Google Scholar]
  8. Verma R, Wharram B, Kovari Iet al. Fyn binds to and phosphorylates the kidney slit diaphragm component Nephrin. J Biol Chem 2003 ; 278 : 20716–20723. [CrossRef] [PubMed] [Google Scholar]
  9. Li M, Armelloni S, Ikehata Met al. Nephrin expression in adult rodent central nervous system and its interaction with glutamate receptors. J Pathol 2011 ; 225 : 118–128. [CrossRef] [PubMed] [Google Scholar]
  10. Giardino L, Armelloni S, Corbelli Aet al. Podocyte glutamatergic signaling contributes to the function of the glomerular filtration barrier. J Am Soc Nephrol 2009 ; 20 : 1929–1940. [CrossRef] [PubMed] [Google Scholar]
  11. Plaisier E, Mougenot B, Verpont MCet al. Glomerular permeability is altered by loss of P0, a myelin protein expressed in glomerular epithelial cells. J Am Soc Nephrol 2005 ; 16 : 3350–3356. [CrossRef] [PubMed] [Google Scholar]
  12. Boerkoel CF, Takashima H, Stankiewicz Pet al. Periaxin mutations cause recessive Dejerine-Sottas neuropathy. Am J Hum Genet 2001 ; 68 : 325–333. [CrossRef] [PubMed] [Google Scholar]
  13. Colin E, Huynh Cong E, Mollet Get al. Loss-of-function mutations in WDR73 are responsible for microcephaly and steroid-resistant nephrotic syndrome: Galloway-Mowat syndrome. Am J Hum Genet 2014 ; 95 : 637–648. [CrossRef] [PubMed] [Google Scholar]
  14. Ben-Omran T, Fahiminiya S, Sorfazlian Net al. Nonsense mutation in the WDR73 gene is associated with Galloway-Mowat syndrome. J Med Genet 2015 ; 52 : 381–390. [CrossRef] [PubMed] [Google Scholar]
  15. Tilley FC, Arrondel C, Chhuon C, et al. Disruption of pathways regulated by Integrator complex in Galloway-Mowat syndrome due to WDR73 mutations. Sci Rep 2021; 11 : 5388. [CrossRef] [PubMed] [Google Scholar]
  16. Machnicka MA, Olchowik A, Grosjean Het al. Distribution and frequencies of post-transcriptional modifications in tRNAs. RNA Biol 2014 ; 11 : 1619–1629. [CrossRef] [PubMed] [Google Scholar]
  17. Ramos J, Fu DThe emerging impact of tRNA modifications in the brain and nervous system. Biochim Biophys Acta Gene Regul Mech 2019 ; 1862 : 412–428. [CrossRef] [PubMed] [Google Scholar]
  18. El Yacoubi B, Hatin I, Deutsch Cet al. A role for the universal Kae1/Qri7/YgjD (COG0533) family in tRNA modification. EMBO J 2011 ; 30 : 882–893. [CrossRef] [PubMed] [Google Scholar]
  19. Perrochia L, Guetta D, Hecker Aet al. Functional assignment of KEOPS/EKC complex subunits in the biosynthesis of the universal t6A tRNA modification. Nucleic Acids Res 2013 ; 41 : 9484–9499. [CrossRef] [PubMed] [Google Scholar]
  20. Wan LCK, Maisonneuve P, Szilard RKet al. Proteomic analysis of the human KEOPS complex identifies C14ORF142 as a core subunit homologous to yeast Gon7. Nucleic Acids Res 2017 ; 45 : 805–817. [CrossRef] [PubMed] [Google Scholar]
  21. Braun DA, Rao J, Mollet Get al. Mutations in KEOPS-complex genes cause nephrotic syndrome with primary microcephaly. Nat Genet 2017 ; 49 : 1529–1538. [CrossRef] [PubMed] [Google Scholar]
  22. Braun DA, Shril S, Sinha Aet al. Mutations in WDR4 as a new cause of Galloway-Mowat syndrome. Am J Med Genet A 2018 ; 176 : 2460–2465. [CrossRef] [PubMed] [Google Scholar]
  23. Alexandrov A, Martzen MR, Phizicky EMTwo proteins that form a complex are required for 7-methylguanosine modification of yeast tRNA. RNA NYN 2002 ; 8 : 1253–1266. [CrossRef] [Google Scholar]
  24. Hezwani M, Fahrenkrog BThe functional versatility of the nuclear pore complex proteins. Semin Cell Dev Biol 2017 ; 68 : 2–9. [CrossRef] [PubMed] [Google Scholar]
  25. Rosti RO, Sotak BN, Bielas SLet al. Homozygous mutation in NUP107 leads to microcephaly with steroid-resistant nephrotic condition similar to Galloway-Mowat syndrome. J Med Genet 2017 ; 54 : 399–403. [CrossRef] [PubMed] [Google Scholar]
  26. Fujita A, Tsukaguchi H, Koshimizu Eet al. Homozygous splicing mutation in NUP133 causes Galloway-Mowat syndrome. Ann Neurol 2018 ; 84 : 814–828. [CrossRef] [PubMed] [Google Scholar]
  27. Libby RT, Lavallee CR, Balkema GWet al. Disruption of laminin beta2 chain production causes alterations in morphology and function in the CNS. J Neurosci 1999 ; 19 : 9399–9411. [CrossRef] [PubMed] [Google Scholar]
  28. Matejas V, Al-Gazali L, Amirlak Iet al. A syndrome comprising childhood-onset glomerular kidney disease and ocular abnormalities with progressive loss of vision is caused by mutated LAMB2. Nephrol Dial Transplant 2006 ; 21 : 3283–3286. [CrossRef] [PubMed] [Google Scholar]
  29. Jh S, G J, Rg V, et al. Forced expression of laminin beta1 in podocytes prevents nephrotic syndrome in mice lacking laminin beta2, a model for Pierson syndrome. Proc Natl Acad Sci USA 2011 ; 108 : 15348–15353. [CrossRef] [PubMed] [Google Scholar]
  30. Gee HY, Saisawat P, Ashraf Set al. ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling. J Clin Invest 2013 ; 123 : 3243–3t53. [CrossRef] [PubMed] [Google Scholar]
  31. Barreto LCLS, Oliveira FS, Nunes PSet al. Epidemiologic Study of Charcot-Marie-Tooth Disease: A Systematic Review. Neuroepidemiology 2016 ; 46 : 157–165. [CrossRef] [PubMed] [Google Scholar]
  32. Pareyson D, Marchesi CDiagnosis, natural history, and management of Charcot-Marie-Tooth disease. Lancet Neurol 2009 ; 8 : 654–667. [CrossRef] [PubMed] [Google Scholar]
  33. Szigeti K, Lupski JRCharcot-Marie-Tooth disease. Eur J Hum Genet 2009 ; 17 : 703–710. [CrossRef] [PubMed] [Google Scholar]
  34. De Rechter S, De Waele L, Levtchenko Eet al. Charcot-Marie-Tooth: Are you testing for proteinuria?. Eur J Paediatr Neurol 2015 ; 19 : 1–5. [CrossRef] [PubMed] [Google Scholar]
  35. Boyer O, Nevo F, Plaisier Eet al. INF2 Mutations in Charcot-Marie-Tooth Disease with Glomerulopathy. N Engl J Med 2011 ; 365 : 2377–2388. [CrossRef] [PubMed] [Google Scholar]
  36. Labat-de-Hoz L, Alonso MA. The formin INF2 in disease: progress from 10 years of research. Cell Mol Life Sci 2020; 77 : 4581–600. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.