Open Access
Issue
Med Sci (Paris)
Volume 39, Number 3, Mars 2023
Néphrologie pédiatrique : de grandes avancées et un futur rempli d’espoir
Page(s) 234 - 245
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2023028
Published online 21 March 2023
  1. Groopman EE, Marasa M, Cameron-Christie S, et al. Diagnostic Utility of Exome Sequencing for Kidney Disease. N Engl J Med 2019 ; 380 : 142–151. [CrossRef] [PubMed] [Google Scholar]
  2. Connaughton DM, Hildebrandt F. Personalized medicine in chronic kidney disease by detection of monogenic mutations. Nephrol Dial Transplant 2020; 35 : 390–7. [CrossRef] [PubMed] [Google Scholar]
  3. Boute N, Gribouval O, Roselli S, et al. NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat Genet 2000 ; 24 : 349–354. [CrossRef] [PubMed] [Google Scholar]
  4. Kemper MJ, Lemke A. Treatment of Genetic Forms of Nephrotic Syndrome. Front Pediatr 2018; 6. [PubMed] [Google Scholar]
  5. Jean G, Fuchshuber A, Town MM, et al. High-resolution mapping of the gene for cystinosis, using combined biochemical and linkage analysis. Am J Hum Genet 1996 ; 58 : 535–543. [PubMed] [Google Scholar]
  6. Town M, Jean G, Cherqui S, et al. A novel gene encoding an integral membrane protein is mutated in nephropathic cystinosis. Nat Genet 1998 ; 18 : 319–324. [CrossRef] [PubMed] [Google Scholar]
  7. Sanyanusin P, Schimmenti LA, McNoe LA, et al. Mutation of the PAX2 gene in a family with optic nerve colobomas, renal anomalies and vesicoureteral reflux. Nat Genet 1995 ; 9 : 358–364. [CrossRef] [PubMed] [Google Scholar]
  8. Weber S, Moriniere V, Knüppel T, et al. Prevalence of mutations in renal developmental genes in children with renal hypodysplasia: results of the ESCAPE study. J Am Soc Nephrol 2006 ; 17 : 2864–2870. [CrossRef] [PubMed] [Google Scholar]
  9. Gribouval O, Gonzales M, Neuhaus T, et al. Mutations in genes in the renin-angiotensin system are associated with autosomal recessive renal tubular dysgenesis. Nat Genet 2005 ; 37 : 964–968. [CrossRef] [PubMed] [Google Scholar]
  10. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015 ; 17 : 405–424. [CrossRef] [PubMed] [Google Scholar]
  11. Devlin LA, Sayer JARenal ciliopathies. Curr Opin Genet Dev 2019 ; 56 : 49–60. [CrossRef] [PubMed] [Google Scholar]
  12. Hildebrandt F, Zhou WNephronophthisis-associated ciliopathies. J Am Soc Nephrol 2007 ; 18 : 1855–1871. [CrossRef] [PubMed] [Google Scholar]
  13. Sang L, Miller JJ, Corbit KC, et al. Mapping the NPHP-JBTS-MKS protein network reveals ciliopathy disease genes and pathways. Cell 2011 ; 145 : 513–528. [CrossRef] [PubMed] [Google Scholar]
  14. Zerres K, Rudnik-Schöneborn S, Senderek J, et al. Autosomal recessive polycystic kidney disease (ARPKD). J Nephrol 2003 ; 16 : 453–458. [PubMed] [Google Scholar]
  15. Guay-Woodford LM, Desmond RAAutosomal recessive polycystic kidney disease: the clinical experience in North America. Pediatrics 2003 ; 111 : 1072–1080. [CrossRef] [PubMed] [Google Scholar]
  16. Burgmaier K, Brinker L, Erger F, et al. Refining genotype-phenotype correlations in 304 patients with autosomal recessive polycystic kidney disease and PKHD1 gene variants. Kidney Int 2021; 100 : 650–9. [CrossRef] [PubMed] [Google Scholar]
  17. Bergmann C, Senderek J, Windelen E, et al. Clinical consequences of PKHD1 mutations in 164 patients with autosomal-recessive polycystic kidney disease (ARPKD). Kidney Int 2005 ; 67 : 829–848. [CrossRef] [PubMed] [Google Scholar]
  18. Barroso-Gil M, Olinger E, Sayer JA. Molecular genetics of renal ciliopathies. Biochem Soc Trans 2021; 49 : 1205–20. [CrossRef] [PubMed] [Google Scholar]
  19. Porath B, Gainullin VG, Cornec-Le Gall E, et al. Mutations in GANAB, Encoding the Glucosidase IIα Subunit, Cause Autosomal-Dominant Polycystic Kidney and Liver Disease. Am J Hum Genet 2016 ; 98 : 1193–1207. [CrossRef] [PubMed] [Google Scholar]
  20. Besse W, Choi J, Ahram D, et al. A noncoding variant in GANAB explains isolated polycystic liver disease (PCLD) in a large family. Hum Mutat 2018 ; 39 : 378–382. [CrossRef] [PubMed] [Google Scholar]
  21. Cornec-Le Gall E, Olson RJ, Besse W, et al. Monoallelic Mutations to DNAJB11 Cause Atypical Autosomal-Dominant Polycystic Kidney Disease. Am J Hum Genet 2018; 102 : 832–44. [CrossRef] [PubMed] [Google Scholar]
  22. Idrizi A, Barbullushi M, Petrela E, et al. The influence of renal manifestations to the progression of autosomal dominant polycystic kidney disease. Hippokratia 2009 ; 13 : 161–164. [PubMed] [Google Scholar]
  23. Harris PC, Rossetti SDeterminants of renal disease variability in ADPKD. Adv Chronic Kidney Dis 2010 ; 17 : 131–139. [CrossRef] [PubMed] [Google Scholar]
  24. O’Toole JF, Otto EA, Hoefele J, et al. Mutational analysis in 119 families with nephronophthisis. Pediatr Nephrol Berl Ger 2007 ; 22 : 366–370. [CrossRef] [PubMed] [Google Scholar]
  25. Luo F, Tao Y-HNephronophthisis: A review of genotype-phenotype correlation. Nephrol Carlton Vic 2018 ; 23 : 904–911. [CrossRef] [PubMed] [Google Scholar]
  26. Levi S.Mass screening for fetal malformations: the Eurofetus study. Ultrasound Obstet Gynecol 2003 ; 22 : 555–558. [CrossRef] [PubMed] [Google Scholar]
  27. Sanna-Cherchi S, Ravani P, Corbani V, et al. Renal outcome in patients with congenital anomalies of the kidney and urinary tract. Kidney Int 2009 ; 76 : 528–533. [CrossRef] [PubMed] [Google Scholar]
  28. Sahay M.Congenital anomalies of kidney and urinary tract (CAKUT). Clin Queries Nephrol 2013 ; 2 : 156–165. [CrossRef] [Google Scholar]
  29. Okumura T, Furuichi K, Higashide T, et al. Association of PAX2 and Other Gene Mutations with the Clinical Manifestations of Renal Coloboma Syndrome. PLoS One 2015 ; 10 : e0142843. [CrossRef] [PubMed] [Google Scholar]
  30. Gendreau S, Servais A, Cohen C. The Case | Atrophic kidney and ocular abnormalities. Kidney Int 2020; 98 : 1059–60. [CrossRef] [PubMed] [Google Scholar]
  31. Chang EH, Menezes M, Meyer NC, et al. Branchio-oto-renal syndrome: the mutation spectrum in EYA1 and its phenotypic consequences. Hum Mutat 2004 ; 23 : 582–589. [CrossRef] [PubMed] [Google Scholar]
  32. Mironovich OL, Bliznetz EA, Markova TG, et al. Molecular Genetic Causes and Clinical Description of Branchio-Oto-renal Syndrome. Russ J Gene 2019 ; 55 : 630–638. [CrossRef] [Google Scholar]
  33. Lindau TA, Cardoso ACV, Rossi NF, et al. Anatomical Changes and Audiological Profile in Branchio-oto-renal Syndrome: A Literature Review. Int Arch Otorhinolaryngol 2014 ; 18 : 68–76. [Google Scholar]
  34. Sanna-Cherchi S, Kiryluk K, Burgess KE, et al. Copy-number disorders are a common cause of congenital kidney malformations. Am J Hum Genet 2012 ; 91 : 987–997. [CrossRef] [PubMed] [Google Scholar]
  35. Verbitsky M, Westland R, Perez A, et al. The copy number variation landscape of congenital anomalies of the kidney and urinary tract. Nat Genet 2019 ; 51 : 117–127. [CrossRef] [PubMed] [Google Scholar]
  36. Trautmann A, Lipska-Zie˛tkiewicz BS, Schaefer F. Exploring the Clinical and Genetic Spectrum of Steroid Resistant Nephrotic Syndrome: The PodoNet Registry. Front Pediatr 2018; 6 : 200. [CrossRef] [PubMed] [Google Scholar]
  37. Sadowski CE, Lovric S, Ashraf S, et al. A single-gene cause in 29.5 % of cases of steroid-resistant nephrotic syndrome. J Am Soc Nephrol 2015 ; 26 : 1279–1289. [CrossRef] [PubMed] [Google Scholar]
  38. Atmaca M, Gulhan B, Korkmaz E, et al. Follow-up results of patients with ADCK4 mutations and the efficacy of CoQ10 treatment. Pediatr Nephrol Berl Ger 2017 ; 32 : 1369–1375. [CrossRef] [PubMed] [Google Scholar]
  39. Ashton EJ, Legrand A, Benoit V, et al. Simultaneous sequencing of 37 genes identified causative mutations in the majority of children with renal tubulopathies. Kidney Int 2018 ; 93 : 961–967. [CrossRef] [PubMed] [Google Scholar]
  40. Hureaux M, Ashton E, Dahan K, et al. High-throughput sequencing contributes to the diagnosis of tubulopathies and familial hypercalcemia hypocalciuria in adults. Kidney Int 2019 ; 96 : 1408–1416. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.