Open Access
Numéro
Med Sci (Paris)
Volume 39, Numéro 3, Mars 2023
Néphrologie pédiatrique : de grandes avancées et un futur rempli d’espoir
Page(s) 234 - 245
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2023028
Publié en ligne 21 mars 2023
  1. Groopman EE, Marasa M, Cameron-Christie S, et al. Diagnostic Utility of Exome Sequencing for Kidney Disease. N Engl J Med 2019 ; 380 : 142–151. [CrossRef] [PubMed] [Google Scholar]
  2. Connaughton DM, Hildebrandt F. Personalized medicine in chronic kidney disease by detection of monogenic mutations. Nephrol Dial Transplant 2020; 35 : 390–7. [CrossRef] [PubMed] [Google Scholar]
  3. Boute N, Gribouval O, Roselli S, et al. NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat Genet 2000 ; 24 : 349–354. [CrossRef] [PubMed] [Google Scholar]
  4. Kemper MJ, Lemke A. Treatment of Genetic Forms of Nephrotic Syndrome. Front Pediatr 2018; 6. [PubMed] [Google Scholar]
  5. Jean G, Fuchshuber A, Town MM, et al. High-resolution mapping of the gene for cystinosis, using combined biochemical and linkage analysis. Am J Hum Genet 1996 ; 58 : 535–543. [PubMed] [Google Scholar]
  6. Town M, Jean G, Cherqui S, et al. A novel gene encoding an integral membrane protein is mutated in nephropathic cystinosis. Nat Genet 1998 ; 18 : 319–324. [CrossRef] [PubMed] [Google Scholar]
  7. Sanyanusin P, Schimmenti LA, McNoe LA, et al. Mutation of the PAX2 gene in a family with optic nerve colobomas, renal anomalies and vesicoureteral reflux. Nat Genet 1995 ; 9 : 358–364. [CrossRef] [PubMed] [Google Scholar]
  8. Weber S, Moriniere V, Knüppel T, et al. Prevalence of mutations in renal developmental genes in children with renal hypodysplasia: results of the ESCAPE study. J Am Soc Nephrol 2006 ; 17 : 2864–2870. [CrossRef] [PubMed] [Google Scholar]
  9. Gribouval O, Gonzales M, Neuhaus T, et al. Mutations in genes in the renin-angiotensin system are associated with autosomal recessive renal tubular dysgenesis. Nat Genet 2005 ; 37 : 964–968. [CrossRef] [PubMed] [Google Scholar]
  10. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015 ; 17 : 405–424. [CrossRef] [PubMed] [Google Scholar]
  11. Devlin LA, Sayer JARenal ciliopathies. Curr Opin Genet Dev 2019 ; 56 : 49–60. [CrossRef] [PubMed] [Google Scholar]
  12. Hildebrandt F, Zhou WNephronophthisis-associated ciliopathies. J Am Soc Nephrol 2007 ; 18 : 1855–1871. [CrossRef] [PubMed] [Google Scholar]
  13. Sang L, Miller JJ, Corbit KC, et al. Mapping the NPHP-JBTS-MKS protein network reveals ciliopathy disease genes and pathways. Cell 2011 ; 145 : 513–528. [CrossRef] [PubMed] [Google Scholar]
  14. Zerres K, Rudnik-Schöneborn S, Senderek J, et al. Autosomal recessive polycystic kidney disease (ARPKD). J Nephrol 2003 ; 16 : 453–458. [PubMed] [Google Scholar]
  15. Guay-Woodford LM, Desmond RAAutosomal recessive polycystic kidney disease: the clinical experience in North America. Pediatrics 2003 ; 111 : 1072–1080. [CrossRef] [PubMed] [Google Scholar]
  16. Burgmaier K, Brinker L, Erger F, et al. Refining genotype-phenotype correlations in 304 patients with autosomal recessive polycystic kidney disease and PKHD1 gene variants. Kidney Int 2021; 100 : 650–9. [CrossRef] [PubMed] [Google Scholar]
  17. Bergmann C, Senderek J, Windelen E, et al. Clinical consequences of PKHD1 mutations in 164 patients with autosomal-recessive polycystic kidney disease (ARPKD). Kidney Int 2005 ; 67 : 829–848. [CrossRef] [PubMed] [Google Scholar]
  18. Barroso-Gil M, Olinger E, Sayer JA. Molecular genetics of renal ciliopathies. Biochem Soc Trans 2021; 49 : 1205–20. [CrossRef] [PubMed] [Google Scholar]
  19. Porath B, Gainullin VG, Cornec-Le Gall E, et al. Mutations in GANAB, Encoding the Glucosidase IIα Subunit, Cause Autosomal-Dominant Polycystic Kidney and Liver Disease. Am J Hum Genet 2016 ; 98 : 1193–1207. [CrossRef] [PubMed] [Google Scholar]
  20. Besse W, Choi J, Ahram D, et al. A noncoding variant in GANAB explains isolated polycystic liver disease (PCLD) in a large family. Hum Mutat 2018 ; 39 : 378–382. [CrossRef] [PubMed] [Google Scholar]
  21. Cornec-Le Gall E, Olson RJ, Besse W, et al. Monoallelic Mutations to DNAJB11 Cause Atypical Autosomal-Dominant Polycystic Kidney Disease. Am J Hum Genet 2018; 102 : 832–44. [CrossRef] [PubMed] [Google Scholar]
  22. Idrizi A, Barbullushi M, Petrela E, et al. The influence of renal manifestations to the progression of autosomal dominant polycystic kidney disease. Hippokratia 2009 ; 13 : 161–164. [PubMed] [Google Scholar]
  23. Harris PC, Rossetti SDeterminants of renal disease variability in ADPKD. Adv Chronic Kidney Dis 2010 ; 17 : 131–139. [CrossRef] [PubMed] [Google Scholar]
  24. O’Toole JF, Otto EA, Hoefele J, et al. Mutational analysis in 119 families with nephronophthisis. Pediatr Nephrol Berl Ger 2007 ; 22 : 366–370. [CrossRef] [PubMed] [Google Scholar]
  25. Luo F, Tao Y-HNephronophthisis: A review of genotype-phenotype correlation. Nephrol Carlton Vic 2018 ; 23 : 904–911. [CrossRef] [PubMed] [Google Scholar]
  26. Levi S.Mass screening for fetal malformations: the Eurofetus study. Ultrasound Obstet Gynecol 2003 ; 22 : 555–558. [CrossRef] [PubMed] [Google Scholar]
  27. Sanna-Cherchi S, Ravani P, Corbani V, et al. Renal outcome in patients with congenital anomalies of the kidney and urinary tract. Kidney Int 2009 ; 76 : 528–533. [CrossRef] [PubMed] [Google Scholar]
  28. Sahay M.Congenital anomalies of kidney and urinary tract (CAKUT). Clin Queries Nephrol 2013 ; 2 : 156–165. [CrossRef] [Google Scholar]
  29. Okumura T, Furuichi K, Higashide T, et al. Association of PAX2 and Other Gene Mutations with the Clinical Manifestations of Renal Coloboma Syndrome. PLoS One 2015 ; 10 : e0142843. [CrossRef] [PubMed] [Google Scholar]
  30. Gendreau S, Servais A, Cohen C. The Case | Atrophic kidney and ocular abnormalities. Kidney Int 2020; 98 : 1059–60. [CrossRef] [PubMed] [Google Scholar]
  31. Chang EH, Menezes M, Meyer NC, et al. Branchio-oto-renal syndrome: the mutation spectrum in EYA1 and its phenotypic consequences. Hum Mutat 2004 ; 23 : 582–589. [CrossRef] [PubMed] [Google Scholar]
  32. Mironovich OL, Bliznetz EA, Markova TG, et al. Molecular Genetic Causes and Clinical Description of Branchio-Oto-renal Syndrome. Russ J Gene 2019 ; 55 : 630–638. [CrossRef] [Google Scholar]
  33. Lindau TA, Cardoso ACV, Rossi NF, et al. Anatomical Changes and Audiological Profile in Branchio-oto-renal Syndrome: A Literature Review. Int Arch Otorhinolaryngol 2014 ; 18 : 68–76. [Google Scholar]
  34. Sanna-Cherchi S, Kiryluk K, Burgess KE, et al. Copy-number disorders are a common cause of congenital kidney malformations. Am J Hum Genet 2012 ; 91 : 987–997. [CrossRef] [PubMed] [Google Scholar]
  35. Verbitsky M, Westland R, Perez A, et al. The copy number variation landscape of congenital anomalies of the kidney and urinary tract. Nat Genet 2019 ; 51 : 117–127. [CrossRef] [PubMed] [Google Scholar]
  36. Trautmann A, Lipska-Zie˛tkiewicz BS, Schaefer F. Exploring the Clinical and Genetic Spectrum of Steroid Resistant Nephrotic Syndrome: The PodoNet Registry. Front Pediatr 2018; 6 : 200. [CrossRef] [PubMed] [Google Scholar]
  37. Sadowski CE, Lovric S, Ashraf S, et al. A single-gene cause in 29.5 % of cases of steroid-resistant nephrotic syndrome. J Am Soc Nephrol 2015 ; 26 : 1279–1289. [CrossRef] [PubMed] [Google Scholar]
  38. Atmaca M, Gulhan B, Korkmaz E, et al. Follow-up results of patients with ADCK4 mutations and the efficacy of CoQ10 treatment. Pediatr Nephrol Berl Ger 2017 ; 32 : 1369–1375. [CrossRef] [PubMed] [Google Scholar]
  39. Ashton EJ, Legrand A, Benoit V, et al. Simultaneous sequencing of 37 genes identified causative mutations in the majority of children with renal tubulopathies. Kidney Int 2018 ; 93 : 961–967. [CrossRef] [PubMed] [Google Scholar]
  40. Hureaux M, Ashton E, Dahan K, et al. High-throughput sequencing contributes to the diagnosis of tubulopathies and familial hypercalcemia hypocalciuria in adults. Kidney Int 2019 ; 96 : 1408–1416. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.