Open Access
Numéro |
Med Sci (Paris)
Volume 39, Numéro 3, Mars 2023
Néphrologie pédiatrique : de grandes avancées et un futur rempli d’espoir
|
|
---|---|---|
Page(s) | 246 - 252 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2023029 | |
Publié en ligne | 21 mars 2023 |
- Schell C, Huber TBThe Evolving Complexity of the Podocyte Cytoskeleton. J Am Soc Nephrol JASN 2017 ; 28 : 3166–3174. [CrossRef] [PubMed] [Google Scholar]
- Grahammer F, Wigge C, Schell C, et al. A flexible, multilayered protein scaffold maintains the slit in between glomerular podocytes. JCI Insight 2016; 1. [Google Scholar]
- Ahola H, Heikkilä E, Aström Eet al. A novel protein, densin, expressed by glomerular podocytes. J Am Soc Nephrol 2003 ; 14 : 1731–1737. [CrossRef] [PubMed] [Google Scholar]
- Beltran PJ, Bixby JL, Masters BAExpression of PTPRO during mouse development suggests involvement in axonogenesis and differentiation of NT-3 and NGF-dependent neurons. J Comp Neurol 2003 ; 456 : 384–395. [CrossRef] [PubMed] [Google Scholar]
- Mundel P, Heid HW, Mundel TMet al. Synaptopodin: an actin-associated protein in telencephalic dendrites and renal podocytes. J Cell Biol 1997 ; 139 : 193–204. [CrossRef] [PubMed] [Google Scholar]
- Weide T, Huber TBSignaling at the slit: podocytes chat by synaptic transmission. J Am Soc Nephrol 2009 ; 20 : 1862–1864. [CrossRef] [PubMed] [Google Scholar]
- Syntichaki P, Tavernarakis NGenetic models of mechanotransduction: the nematode Caenorhabditis elegans. Physiol Rev 2004 ; 84 : 1097–1153. [CrossRef] [PubMed] [Google Scholar]
- Verma R, Wharram B, Kovari Iet al. Fyn binds to and phosphorylates the kidney slit diaphragm component Nephrin. J Biol Chem 2003 ; 278 : 20716–20723. [CrossRef] [PubMed] [Google Scholar]
- Li M, Armelloni S, Ikehata Met al. Nephrin expression in adult rodent central nervous system and its interaction with glutamate receptors. J Pathol 2011 ; 225 : 118–128. [CrossRef] [PubMed] [Google Scholar]
- Giardino L, Armelloni S, Corbelli Aet al. Podocyte glutamatergic signaling contributes to the function of the glomerular filtration barrier. J Am Soc Nephrol 2009 ; 20 : 1929–1940. [CrossRef] [PubMed] [Google Scholar]
- Plaisier E, Mougenot B, Verpont MCet al. Glomerular permeability is altered by loss of P0, a myelin protein expressed in glomerular epithelial cells. J Am Soc Nephrol 2005 ; 16 : 3350–3356. [CrossRef] [PubMed] [Google Scholar]
- Boerkoel CF, Takashima H, Stankiewicz Pet al. Periaxin mutations cause recessive Dejerine-Sottas neuropathy. Am J Hum Genet 2001 ; 68 : 325–333. [CrossRef] [PubMed] [Google Scholar]
- Colin E, Huynh Cong E, Mollet Get al. Loss-of-function mutations in WDR73 are responsible for microcephaly and steroid-resistant nephrotic syndrome: Galloway-Mowat syndrome. Am J Hum Genet 2014 ; 95 : 637–648. [CrossRef] [PubMed] [Google Scholar]
- Ben-Omran T, Fahiminiya S, Sorfazlian Net al. Nonsense mutation in the WDR73 gene is associated with Galloway-Mowat syndrome. J Med Genet 2015 ; 52 : 381–390. [CrossRef] [PubMed] [Google Scholar]
- Tilley FC, Arrondel C, Chhuon C, et al. Disruption of pathways regulated by Integrator complex in Galloway-Mowat syndrome due to WDR73 mutations. Sci Rep 2021; 11 : 5388. [CrossRef] [PubMed] [Google Scholar]
- Machnicka MA, Olchowik A, Grosjean Het al. Distribution and frequencies of post-transcriptional modifications in tRNAs. RNA Biol 2014 ; 11 : 1619–1629. [CrossRef] [PubMed] [Google Scholar]
- Ramos J, Fu DThe emerging impact of tRNA modifications in the brain and nervous system. Biochim Biophys Acta Gene Regul Mech 2019 ; 1862 : 412–428. [CrossRef] [PubMed] [Google Scholar]
- El Yacoubi B, Hatin I, Deutsch Cet al. A role for the universal Kae1/Qri7/YgjD (COG0533) family in tRNA modification. EMBO J 2011 ; 30 : 882–893. [CrossRef] [PubMed] [Google Scholar]
- Perrochia L, Guetta D, Hecker Aet al. Functional assignment of KEOPS/EKC complex subunits in the biosynthesis of the universal t6A tRNA modification. Nucleic Acids Res 2013 ; 41 : 9484–9499. [CrossRef] [PubMed] [Google Scholar]
- Wan LCK, Maisonneuve P, Szilard RKet al. Proteomic analysis of the human KEOPS complex identifies C14ORF142 as a core subunit homologous to yeast Gon7. Nucleic Acids Res 2017 ; 45 : 805–817. [CrossRef] [PubMed] [Google Scholar]
- Braun DA, Rao J, Mollet Get al. Mutations in KEOPS-complex genes cause nephrotic syndrome with primary microcephaly. Nat Genet 2017 ; 49 : 1529–1538. [CrossRef] [PubMed] [Google Scholar]
- Braun DA, Shril S, Sinha Aet al. Mutations in WDR4 as a new cause of Galloway-Mowat syndrome. Am J Med Genet A 2018 ; 176 : 2460–2465. [CrossRef] [PubMed] [Google Scholar]
- Alexandrov A, Martzen MR, Phizicky EMTwo proteins that form a complex are required for 7-methylguanosine modification of yeast tRNA. RNA NYN 2002 ; 8 : 1253–1266. [CrossRef] [Google Scholar]
- Hezwani M, Fahrenkrog BThe functional versatility of the nuclear pore complex proteins. Semin Cell Dev Biol 2017 ; 68 : 2–9. [CrossRef] [PubMed] [Google Scholar]
- Rosti RO, Sotak BN, Bielas SLet al. Homozygous mutation in NUP107 leads to microcephaly with steroid-resistant nephrotic condition similar to Galloway-Mowat syndrome. J Med Genet 2017 ; 54 : 399–403. [CrossRef] [PubMed] [Google Scholar]
- Fujita A, Tsukaguchi H, Koshimizu Eet al. Homozygous splicing mutation in NUP133 causes Galloway-Mowat syndrome. Ann Neurol 2018 ; 84 : 814–828. [CrossRef] [PubMed] [Google Scholar]
- Libby RT, Lavallee CR, Balkema GWet al. Disruption of laminin beta2 chain production causes alterations in morphology and function in the CNS. J Neurosci 1999 ; 19 : 9399–9411. [CrossRef] [PubMed] [Google Scholar]
- Matejas V, Al-Gazali L, Amirlak Iet al. A syndrome comprising childhood-onset glomerular kidney disease and ocular abnormalities with progressive loss of vision is caused by mutated LAMB2. Nephrol Dial Transplant 2006 ; 21 : 3283–3286. [CrossRef] [PubMed] [Google Scholar]
- Jh S, G J, Rg V, et al. Forced expression of laminin beta1 in podocytes prevents nephrotic syndrome in mice lacking laminin beta2, a model for Pierson syndrome. Proc Natl Acad Sci USA 2011 ; 108 : 15348–15353. [CrossRef] [PubMed] [Google Scholar]
- Gee HY, Saisawat P, Ashraf Set al. ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling. J Clin Invest 2013 ; 123 : 3243–3t53. [CrossRef] [PubMed] [Google Scholar]
- Barreto LCLS, Oliveira FS, Nunes PSet al. Epidemiologic Study of Charcot-Marie-Tooth Disease: A Systematic Review. Neuroepidemiology 2016 ; 46 : 157–165. [CrossRef] [PubMed] [Google Scholar]
- Pareyson D, Marchesi CDiagnosis, natural history, and management of Charcot-Marie-Tooth disease. Lancet Neurol 2009 ; 8 : 654–667. [CrossRef] [PubMed] [Google Scholar]
- Szigeti K, Lupski JRCharcot-Marie-Tooth disease. Eur J Hum Genet 2009 ; 17 : 703–710. [CrossRef] [PubMed] [Google Scholar]
- De Rechter S, De Waele L, Levtchenko Eet al. Charcot-Marie-Tooth: Are you testing for proteinuria?. Eur J Paediatr Neurol 2015 ; 19 : 1–5. [CrossRef] [PubMed] [Google Scholar]
- Boyer O, Nevo F, Plaisier Eet al. INF2 Mutations in Charcot-Marie-Tooth Disease with Glomerulopathy. N Engl J Med 2011 ; 365 : 2377–2388. [CrossRef] [PubMed] [Google Scholar]
- Labat-de-Hoz L, Alonso MA. The formin INF2 in disease: progress from 10 years of research. Cell Mol Life Sci 2020; 77 : 4581–600. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.