Open Access
Med Sci (Paris)
Volume 39, Number 2, Février 2023
Page(s) 119 - 128
Section M/S Revues
Published online 17 February 2023
  1. McGann JP. Poor human olfaction is a 19th-century myth. Science 2017 : 356 [Google Scholar]
  2. Maric V, Ramanathan D, Mishra J. Respiratory regulation & interactions with neuro-cognitive circuitry. Neurosci Biobehav Rev 2020; 112 : 95–106. [Google Scholar]
  3. Kohli P, Soler ZM, Nguyen SA, et al. The Association Between Olfaction and Depression: A Systematic Review. CHEMSE 2016 ; 41 : 479–486. [CrossRef] [PubMed] [Google Scholar]
  4. Hummel T, Whitcroft KL, Andrews P, et al. Position paper on olfactory dysfunction. Rhin 2017 ; 54 : 1–30. [Google Scholar]
  5. Murphy C. Prevalence of Olfactory Impairment in Older Adults. JAMA 2002 ; 288 : 2307. [CrossRef] [PubMed] [Google Scholar]
  6. Okumura S, Saito T, Okazaki K, et al. Clinical features of olfactory dysfunction in elderly patients. Auris Nasus Larynx 2022; S0385–8146(22)00163–8. [PubMed] [Google Scholar]
  7. Richard M, Kok A, Meulder D de, et al. SARS-CoV-2 is transmitted via contact and via the air between ferrets. Nat Commun 2020; 11 : 3496. [Google Scholar]
  8. Sugiura M, Aiba T, Mori J, Nakai Y. An epidemiological study of postviral olfactory disorder. Acta Otolaryngol 1998 ; 538(suppl): 191–196. [Google Scholar]
  9. Potter MR, Chen JH, Lobban N, et al. Olfactory dysfunction from acute upper respiratory infections: relationship to season of onset. Int Forum Allergy Rhinol. 2020; 10 : 706–12. [CrossRef] [PubMed] [Google Scholar]
  10. Bryche B, Baly C, Meunier N. Modulation of olfactory signal detection in the olfactory epithelium: focus on the internal and external environment, and the emerging role of the immune system. Cell Tissue Res 2021; 384 : 589–605. [CrossRef] [PubMed] [Google Scholar]
  11. Salazar I, Sanchez-Quinteiro P, Barrios AW, et al. Anatomy of the olfactory mucosa. Handb Clin Neurol 2019 ; 164 : 47–65. [CrossRef] [PubMed] [Google Scholar]
  12. Bird DJ, Murphy WJ, Fox-Rosales L, et al. Olfaction written in bone: cribriform plate size parallels olfactory receptor gene repertoires in Mammalia. Proc R Soc B 2018 ; 285 : 20180100. [Google Scholar]
  13. Chaves AJ, Vergara-Alert J, Busquets N, et al. Neuroinvasion of the highly pathogenic influenza virus H7N1 is caused by disruption of the blood brain barrier in an avian model. PLoS One 2014 ; 9 : e115138. [Google Scholar]
  14. Okuno H, Yahata Y, Tanaka-Taya K, et al. Characteristics and Outcomes of Influenza-Associated Encephalopathy Cases Among Children and Adults in Japan, 2010–2015. Clin Infect Dis 2018 ; 66 : 1831–1837. [CrossRef] [PubMed] [Google Scholar]
  15. de Wit E, Siegers J, Cronin JM, et al. 1918 H1N1 influenza virus replicates and induces pro-inflammatory cytokine responses in extra-respiratory tissues of ferrets. J Infect Dis 2018 ; 217 : 1237–1246. [CrossRef] [PubMed] [Google Scholar]
  16. Mori I, Goshima F, Imai Y, et al. Olfactory receptor neurons prevent dissemination of neurovirulent influenza A virus into the brain by undergoing virus-induced apoptosis. J Gen Virol 2002 ; 83 : 2109–2116. [CrossRef] [PubMed] [Google Scholar]
  17. Frere JJ, Serafini RA, Pryce KD, et al. SARS-CoV-2 infection in hamsters and humans results in lasting and unique systemic perturbations post recovery. Sci Transl Med 2022; eabq3059. [Google Scholar]
  18. Chen M, Reed RR, Lane AP. Chronic Inflammation Directs an Olfactory Stem Cell Functional Switch from Neuroregeneration to Immune Defense. Cell stem cell 2019 ; 25 : 501–13.e5. [CrossRef] [PubMed] [Google Scholar]
  19. Butowt R, Bilinska K, Bartheld CS von. Olfactory dysfunction in COVID-19: new insights into the underlying mechanisms. Trends Neurosci 2023; 46 : 75–90. [Google Scholar]
  20. Espinoza JA, Bohmwald K, Cespedes PF, et al. Impaired learning resulting from respiratory syncytial virus infection. Proc Natl Acad Sci USA 2013 ; 110 : 9112–9117. [Google Scholar]
  21. Bryche B, Fretaud M, Saint-Albin Deliot A, et al. Respiratory syncytial virus tropism for olfactory sensory neurons in mice. J Neurochem 2019 ; 155 : 137–153. [Google Scholar]
  22. McCray PB, Pewe L, Wohlford-Lenane C, et al. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J Virol 2007 ; 81 : 813–821. [Google Scholar]
  23. Butowt R, Meunier N, Bryche B, et al. The olfactory nerve is not a likely route to brain infection in COVID-19: a critical review of data from humans and animal models. Acta Neuropathol 2021; 141 : 809–22. [CrossRef] [PubMed] [Google Scholar]
  24. Khan M, Yoo S-J, Clijsters M, et al. Visualizing in deceased COVID-19 patients how SARS-CoV-2 attacks the respiratory and olfactory mucosae but spares the olfactory bulb. Cell 2021; 184 : 5932–49.e15. [CrossRef] [PubMed] [Google Scholar]
  25. Khan M, Clijsters M, Choi S, et al. Anatomical barriers against SARS-CoV-2 neuroinvasion at vulnerable interfaces visualized in deceased COVID-19 patients. Neuron 2022; 110 :3919–35.e6. [Google Scholar]
  26. Bilinska K, Jakubowska P, V. O. N., Bartheld CS, et al. Expression of the SARS-CoV-2 Entry Proteins, ACE2 and TMPRSS2, in Cells of the Olfactory Epithelium: Identification of Cell Types and Trends with Age. ACS Chem Neurosci 2020; 11 : 1555–62. [CrossRef] [PubMed] [Google Scholar]
  27. Armando F, Beythien G, Kaiser FK, et al. SARS-CoV-2 Omicron variant causes mild pathology in the upper and lower respiratory tract of hamsters. Nat Commun 2022; 13 : 3519. [Google Scholar]
  28. Killingley B, Mann AJ, Kalinova M, et al. Safety, tolerability and viral kinetics during SARS-CoV-2 human challenge in young adults. Nat Med 2022; 28 : 1031–41. [Google Scholar]
  29. Brann DH, Tsukahara T, Weinreb C, et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci Adv 2020; 6 : eabc5801. [Google Scholar]
  30. Melo GD de, Lazarini F, Levallois S, et al. COVID-19-related anosmia is associated with viral persistence and inflammation in human olfactory epithelium and brain infection in hamsters. Sci Transl Med 2021; eabf8396. [Google Scholar]
  31. Sia SF, Yan L-M, Chin AW, et al. Pathogenesis and transmission of SARS-CoV-2 in golden Syrian hamsters. Nature 2020; 583 : 834–8. [Google Scholar]
  32. Bourgon C, Audrey SA, Ophélie A-G, et al. Neutrophils initiate the destruction of the olfactory epithelium during SARS-CoV-2 infection in hamsters. Cell Mol Life Sci 2022; 79 : 616. [CrossRef] [PubMed] [Google Scholar]
  33. Bar-On YM, Flamholz A, Phillips R, et al. SARS-CoV-2 (COVID-19) by the numbers. eLife 2020; 9 : e57309. [CrossRef] [PubMed] [Google Scholar]
  34. Frisch S, Francis H. Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol 1994 ; 124 : 619–626. [CrossRef] [PubMed] [Google Scholar]
  35. Bryche B, St Albin A, Murri S, et al. Massive transient damage of the olfactory epithelium associated with infection of sustentacular cells by SARS-CoV-2 in golden Syrian hamsters. Brain Behav Immun 2020; 89 : 579–86. [CrossRef] [PubMed] [Google Scholar]
  36. Liberia T, Martin-Lopez E, Meller SJ, et al. Sequential maturation of olfactory sensory neurons in the mature olfactory epithelium. eNeuro 2019; 6 : ENEURO.0266-19.2019. [CrossRef] [PubMed] [Google Scholar]
  37. Huang JS, Kunkhyen T, Rangel AN, et al. Immature olfactory sensory neurons provide behaviourally relevant sensory input to the olfactory bulb. Nat Commun 2022; 13 : 6194. [Google Scholar]
  38. Eliezer M, Hamel AL, Houdart E, et al. Loss of smell in COVID-19 patients: MRI data reveals a transient edema of the olfactory clefts. Neurology 2020; 95 : e3145–52. [Google Scholar]
  39. Ryabkova VA, Churilov LP, Shoenfeld Y. Influenza infection, SARS, MERS and COVID-19: Cytokine storm - The common denominator and the lessons to be learned. Clin Immunol 2021; 223 : 108652. [CrossRef] [PubMed] [Google Scholar]
  40. Rutkai I, Mayer MG, Hellmers LM, et al. Neuropathology and virus in brain of SARS-CoV-2 infected non-human primates. Nat Commun 2022; 13 : 1745. [Google Scholar]
  41. Finlay JB, Brann DH, Abi Hachem R, et al. Persistent post-COVID-19 smell loss is associated with immune cell infiltration and altered gene expression in olfactory epithelium. Sci Transl Med 2022; 14 : eadd0484. [Google Scholar]
  42. Klimek L, Hagemann J, Döge J, et al. Olfactory and gustatory disorders in COVID-19. Allergo J Int 2022; 31 : 243–50. [CrossRef] [PubMed] [Google Scholar]
  43. Parker JK, Kelly CE, Gane SB. Insights into the molecular triggers of parosmia based on gas chromatography olfactometry. Commun Med 2022; 2 : 58. [CrossRef] [PubMed] [Google Scholar]
  44. Doty RL, Shaman P, Kimmelman CP, et al. University of pennsylvania smell identification test: A rapid quantitative olfactory function test for the clinic. Laryngoscope 1984 ; 94 : 176–178. [Google Scholar]
  45. Hintschich CA, Dietz M, Haehner A, et al. Topical Administration of Mometasone Is Not Helpful in Post-COVID-19 Olfactory Dysfunction. Life 2022; 12 : 1483. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.