Open Access
Issue |
Med Sci (Paris)
Volume 39, Number 2, Février 2023
|
|
---|---|---|
Page(s) | 111 - 118 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2023005 | |
Published online | 17 February 2023 |
- Crook ST, Witztum JL, Bennett CF, et al. RNA-Targeted Therapeutics. Cell Metab 2018 ; 27 : 714–739. [CrossRef] [PubMed] [Google Scholar]
- Li LC, Okino ST, Zhao H, et al. Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci USA 2006 ; 103 : 17337–17342. [CrossRef] [PubMed] [Google Scholar]
- Moumné L, Marie AC, Crouvezier N. Oligonucleotide Therapeutics: From Discovery and Development to Patentability. Pharmaceutics 2022; 14 : 260. [CrossRef] [PubMed] [Google Scholar]
- Liang XH, Sun H, Nichols JG, et al. RNase H1-Dependent Antisense Oligonucleotides Are Robustly Active in Directing RNA Cleavage in Both the Cytoplasm and the Nucleus. Mol Ther 2017 ; 25 : 2075–2092. [CrossRef] [PubMed] [Google Scholar]
- Bennett CF. Therapeutic Antisense Oligonucleotides Are Coming of Age. Annu Rev Med 2019 ; 70 : 307–321. [CrossRef] [PubMed] [Google Scholar]
- Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998 ; 391 : 806–811. [CrossRef] [PubMed] [Google Scholar]
- Lam JK, Chow MY, Zhang Y, et al. siRNA Versus miRNA as Therapeutics for Gene Silencing. Mol Ther Nucleic Acids 2015 ; 4 : e252. [CrossRef] [PubMed] [Google Scholar]
- Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001 ; 411 : 494–498. [CrossRef] [PubMed] [Google Scholar]
- Hoy SM. Patisiran: First Global Approval. Drugs 2018 ; 78 : 1625–1631. [CrossRef] [PubMed] [Google Scholar]
- Hu B, Zhong L, Weng Y, et al. Therapeutic siRNA: state of the art. Signal Transduct Target Ther 2020; 5 : 101. [CrossRef] [PubMed] [Google Scholar]
- Roberts TC, Langer R, Wood MJA. Advances in oligonucleotide drug delivery. Nat Rev Drug Discov 2020; 19 : 673–94. [CrossRef] [PubMed] [Google Scholar]
- Springer AD, Dowdy SF. GalNAc-siRNA Conjugates: Leading the Way for Delivery of RNAi Therapeutics. Nucleic Acid Ther 2018 ; 28 : 109–118. [CrossRef] [PubMed] [Google Scholar]
- Matsuo M. Antisense Oligonucleotide-Mediated Exon-skipping Therapies: Precision Medicine Spreading from Duchenne Muscular Dystrophy. JMA J 2021; 4 : 232–40. [CrossRef] [PubMed] [Google Scholar]
- Cideciyan AV, Jacobson SG, Ho AC, et al. Durable vision improvement after a single treatment with antisense oligonucleotide sepofarsen: a case report. Nat Med 2021; 27 : 785–9. [CrossRef] [PubMed] [Google Scholar]
- Wadman M. Antisense rescues babies from killer disease. Science 2016 ; 354 : 1359–1360. [CrossRef] [PubMed] [Google Scholar]
- Reebye V, Saetrom P, Mintz PJ, et al. Novel RNA oligonucleotide improves liver function and inhibits liver carcinogenesis in vivo. Hepatology 2014 ; 59 : 216–222. [CrossRef] [PubMed] [Google Scholar]
- Sarker D, Plummer R, Meyer T, et al. MTL-CEBPA, a Small Activating RNA Therapeutic Upregulating C/EBP-α, in Patients with Advanced Liver Cancer: A First-in-Human, Multicenter, Open-Label, Phase I Trial. Clin Cancer Res 2020; 26 : 3936–46. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.