Open Access
Numéro |
Med Sci (Paris)
Volume 39, Numéro 2, Février 2023
|
|
---|---|---|
Page(s) | 111 - 118 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2023005 | |
Publié en ligne | 17 février 2023 |
- Crook ST, Witztum JL, Bennett CF, et al. RNA-Targeted Therapeutics. Cell Metab 2018 ; 27 : 714–739. [CrossRef] [PubMed] [Google Scholar]
- Li LC, Okino ST, Zhao H, et al. Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci USA 2006 ; 103 : 17337–17342. [CrossRef] [PubMed] [Google Scholar]
- Moumné L, Marie AC, Crouvezier N. Oligonucleotide Therapeutics: From Discovery and Development to Patentability. Pharmaceutics 2022; 14 : 260. [CrossRef] [PubMed] [Google Scholar]
- Liang XH, Sun H, Nichols JG, et al. RNase H1-Dependent Antisense Oligonucleotides Are Robustly Active in Directing RNA Cleavage in Both the Cytoplasm and the Nucleus. Mol Ther 2017 ; 25 : 2075–2092. [CrossRef] [PubMed] [Google Scholar]
- Bennett CF. Therapeutic Antisense Oligonucleotides Are Coming of Age. Annu Rev Med 2019 ; 70 : 307–321. [CrossRef] [PubMed] [Google Scholar]
- Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998 ; 391 : 806–811. [CrossRef] [PubMed] [Google Scholar]
- Lam JK, Chow MY, Zhang Y, et al. siRNA Versus miRNA as Therapeutics for Gene Silencing. Mol Ther Nucleic Acids 2015 ; 4 : e252. [CrossRef] [PubMed] [Google Scholar]
- Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001 ; 411 : 494–498. [CrossRef] [PubMed] [Google Scholar]
- Hoy SM. Patisiran: First Global Approval. Drugs 2018 ; 78 : 1625–1631. [CrossRef] [PubMed] [Google Scholar]
- Hu B, Zhong L, Weng Y, et al. Therapeutic siRNA: state of the art. Signal Transduct Target Ther 2020; 5 : 101. [CrossRef] [PubMed] [Google Scholar]
- Roberts TC, Langer R, Wood MJA. Advances in oligonucleotide drug delivery. Nat Rev Drug Discov 2020; 19 : 673–94. [CrossRef] [PubMed] [Google Scholar]
- Springer AD, Dowdy SF. GalNAc-siRNA Conjugates: Leading the Way for Delivery of RNAi Therapeutics. Nucleic Acid Ther 2018 ; 28 : 109–118. [CrossRef] [PubMed] [Google Scholar]
- Matsuo M. Antisense Oligonucleotide-Mediated Exon-skipping Therapies: Precision Medicine Spreading from Duchenne Muscular Dystrophy. JMA J 2021; 4 : 232–40. [CrossRef] [PubMed] [Google Scholar]
- Cideciyan AV, Jacobson SG, Ho AC, et al. Durable vision improvement after a single treatment with antisense oligonucleotide sepofarsen: a case report. Nat Med 2021; 27 : 785–9. [CrossRef] [PubMed] [Google Scholar]
- Wadman M. Antisense rescues babies from killer disease. Science 2016 ; 354 : 1359–1360. [CrossRef] [PubMed] [Google Scholar]
- Reebye V, Saetrom P, Mintz PJ, et al. Novel RNA oligonucleotide improves liver function and inhibits liver carcinogenesis in vivo. Hepatology 2014 ; 59 : 216–222. [CrossRef] [PubMed] [Google Scholar]
- Sarker D, Plummer R, Meyer T, et al. MTL-CEBPA, a Small Activating RNA Therapeutic Upregulating C/EBP-α, in Patients with Advanced Liver Cancer: A First-in-Human, Multicenter, Open-Label, Phase I Trial. Clin Cancer Res 2020; 26 : 3936–46. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.