Open Access
Numéro |
Med Sci (Paris)
Volume 39, Numéro 2, Février 2023
|
|
---|---|---|
Page(s) | 119 - 128 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2023007 | |
Publié en ligne | 17 février 2023 |
- McGann JP. Poor human olfaction is a 19th-century myth. Science 2017 : 356 [Google Scholar]
- Maric V, Ramanathan D, Mishra J. Respiratory regulation & interactions with neuro-cognitive circuitry. Neurosci Biobehav Rev 2020; 112 : 95–106. [CrossRef] [PubMed] [Google Scholar]
- Kohli P, Soler ZM, Nguyen SA, et al. The Association Between Olfaction and Depression: A Systematic Review. CHEMSE 2016 ; 41 : 479–486. [CrossRef] [PubMed] [Google Scholar]
- Hummel T, Whitcroft KL, Andrews P, et al. Position paper on olfactory dysfunction. Rhin 2017 ; 54 : 1–30. [CrossRef] [Google Scholar]
- Murphy C. Prevalence of Olfactory Impairment in Older Adults. JAMA 2002 ; 288 : 2307. [CrossRef] [PubMed] [Google Scholar]
- Okumura S, Saito T, Okazaki K, et al. Clinical features of olfactory dysfunction in elderly patients. Auris Nasus Larynx 2022; S0385–8146(22)00163–8. [PubMed] [Google Scholar]
- Richard M, Kok A, Meulder D de, et al. SARS-CoV-2 is transmitted via contact and via the air between ferrets. Nat Commun 2020; 11 : 3496. [CrossRef] [PubMed] [Google Scholar]
- Sugiura M, Aiba T, Mori J, Nakai Y. An epidemiological study of postviral olfactory disorder. Acta Otolaryngol 1998 ; 538(suppl): 191–196. [Google Scholar]
- Potter MR, Chen JH, Lobban N, et al. Olfactory dysfunction from acute upper respiratory infections: relationship to season of onset. Int Forum Allergy Rhinol. 2020; 10 : 706–12. [CrossRef] [PubMed] [Google Scholar]
- Bryche B, Baly C, Meunier N. Modulation of olfactory signal detection in the olfactory epithelium: focus on the internal and external environment, and the emerging role of the immune system. Cell Tissue Res 2021; 384 : 589–605. [CrossRef] [PubMed] [Google Scholar]
- Salazar I, Sanchez-Quinteiro P, Barrios AW, et al. Anatomy of the olfactory mucosa. Handb Clin Neurol 2019 ; 164 : 47–65. [CrossRef] [PubMed] [Google Scholar]
- Bird DJ, Murphy WJ, Fox-Rosales L, et al. Olfaction written in bone: cribriform plate size parallels olfactory receptor gene repertoires in Mammalia. Proc R Soc B 2018 ; 285 : 20180100. [CrossRef] [PubMed] [Google Scholar]
- Chaves AJ, Vergara-Alert J, Busquets N, et al. Neuroinvasion of the highly pathogenic influenza virus H7N1 is caused by disruption of the blood brain barrier in an avian model. PLoS One 2014 ; 9 : e115138. [CrossRef] [PubMed] [Google Scholar]
- Okuno H, Yahata Y, Tanaka-Taya K, et al. Characteristics and Outcomes of Influenza-Associated Encephalopathy Cases Among Children and Adults in Japan, 2010–2015. Clin Infect Dis 2018 ; 66 : 1831–1837. [CrossRef] [PubMed] [Google Scholar]
- de Wit E, Siegers J, Cronin JM, et al. 1918 H1N1 influenza virus replicates and induces pro-inflammatory cytokine responses in extra-respiratory tissues of ferrets. J Infect Dis 2018 ; 217 : 1237–1246. [CrossRef] [PubMed] [Google Scholar]
- Mori I, Goshima F, Imai Y, et al. Olfactory receptor neurons prevent dissemination of neurovirulent influenza A virus into the brain by undergoing virus-induced apoptosis. J Gen Virol 2002 ; 83 : 2109–2116. [CrossRef] [PubMed] [Google Scholar]
- Frere JJ, Serafini RA, Pryce KD, et al. SARS-CoV-2 infection in hamsters and humans results in lasting and unique systemic perturbations post recovery. Sci Transl Med 2022; eabq3059. [CrossRef] [PubMed] [Google Scholar]
- Chen M, Reed RR, Lane AP. Chronic Inflammation Directs an Olfactory Stem Cell Functional Switch from Neuroregeneration to Immune Defense. Cell stem cell 2019 ; 25 : 501–13.e5. [CrossRef] [PubMed] [Google Scholar]
- Butowt R, Bilinska K, Bartheld CS von. Olfactory dysfunction in COVID-19: new insights into the underlying mechanisms. Trends Neurosci 2023; 46 : 75–90. [CrossRef] [PubMed] [Google Scholar]
- Espinoza JA, Bohmwald K, Cespedes PF, et al. Impaired learning resulting from respiratory syncytial virus infection. Proc Natl Acad Sci USA 2013 ; 110 : 9112–9117. [CrossRef] [PubMed] [Google Scholar]
- Bryche B, Fretaud M, Saint-Albin Deliot A, et al. Respiratory syncytial virus tropism for olfactory sensory neurons in mice. J Neurochem 2019 ; 155 : 137–153. [Google Scholar]
- McCray PB, Pewe L, Wohlford-Lenane C, et al. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J Virol 2007 ; 81 : 813–821. [CrossRef] [PubMed] [Google Scholar]
- Butowt R, Meunier N, Bryche B, et al. The olfactory nerve is not a likely route to brain infection in COVID-19: a critical review of data from humans and animal models. Acta Neuropathol 2021; 141 : 809–22. [CrossRef] [PubMed] [Google Scholar]
- Khan M, Yoo S-J, Clijsters M, et al. Visualizing in deceased COVID-19 patients how SARS-CoV-2 attacks the respiratory and olfactory mucosae but spares the olfactory bulb. Cell 2021; 184 : 5932–49.e15. [CrossRef] [PubMed] [Google Scholar]
- Khan M, Clijsters M, Choi S, et al. Anatomical barriers against SARS-CoV-2 neuroinvasion at vulnerable interfaces visualized in deceased COVID-19 patients. Neuron 2022; 110 :3919–35.e6. [CrossRef] [PubMed] [Google Scholar]
- Bilinska K, Jakubowska P, V. O. N., Bartheld CS, et al. Expression of the SARS-CoV-2 Entry Proteins, ACE2 and TMPRSS2, in Cells of the Olfactory Epithelium: Identification of Cell Types and Trends with Age. ACS Chem Neurosci 2020; 11 : 1555–62. [CrossRef] [PubMed] [Google Scholar]
- Armando F, Beythien G, Kaiser FK, et al. SARS-CoV-2 Omicron variant causes mild pathology in the upper and lower respiratory tract of hamsters. Nat Commun 2022; 13 : 3519. [CrossRef] [PubMed] [Google Scholar]
- Killingley B, Mann AJ, Kalinova M, et al. Safety, tolerability and viral kinetics during SARS-CoV-2 human challenge in young adults. Nat Med 2022; 28 : 1031–41. [CrossRef] [PubMed] [Google Scholar]
- Brann DH, Tsukahara T, Weinreb C, et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci Adv 2020; 6 : eabc5801. [CrossRef] [PubMed] [Google Scholar]
- Melo GD de, Lazarini F, Levallois S, et al. COVID-19-related anosmia is associated with viral persistence and inflammation in human olfactory epithelium and brain infection in hamsters. Sci Transl Med 2021; eabf8396. [CrossRef] [PubMed] [Google Scholar]
- Sia SF, Yan L-M, Chin AW, et al. Pathogenesis and transmission of SARS-CoV-2 in golden Syrian hamsters. Nature 2020; 583 : 834–8. [CrossRef] [PubMed] [Google Scholar]
- Bourgon C, Audrey SA, Ophélie A-G, et al. Neutrophils initiate the destruction of the olfactory epithelium during SARS-CoV-2 infection in hamsters. Cell Mol Life Sci 2022; 79 : 616. [CrossRef] [PubMed] [Google Scholar]
- Bar-On YM, Flamholz A, Phillips R, et al. SARS-CoV-2 (COVID-19) by the numbers. eLife 2020; 9 : e57309. [CrossRef] [PubMed] [Google Scholar]
- Frisch S, Francis H. Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol 1994 ; 124 : 619–626. [CrossRef] [PubMed] [Google Scholar]
- Bryche B, St Albin A, Murri S, et al. Massive transient damage of the olfactory epithelium associated with infection of sustentacular cells by SARS-CoV-2 in golden Syrian hamsters. Brain Behav Immun 2020; 89 : 579–86. [CrossRef] [PubMed] [Google Scholar]
- Liberia T, Martin-Lopez E, Meller SJ, et al. Sequential maturation of olfactory sensory neurons in the mature olfactory epithelium. eNeuro 2019; 6 : ENEURO.0266-19.2019. [CrossRef] [PubMed] [Google Scholar]
- Huang JS, Kunkhyen T, Rangel AN, et al. Immature olfactory sensory neurons provide behaviourally relevant sensory input to the olfactory bulb. Nat Commun 2022; 13 : 6194. [CrossRef] [PubMed] [Google Scholar]
- Eliezer M, Hamel AL, Houdart E, et al. Loss of smell in COVID-19 patients: MRI data reveals a transient edema of the olfactory clefts. Neurology 2020; 95 : e3145–52. [CrossRef] [PubMed] [Google Scholar]
- Ryabkova VA, Churilov LP, Shoenfeld Y. Influenza infection, SARS, MERS and COVID-19: Cytokine storm - The common denominator and the lessons to be learned. Clin Immunol 2021; 223 : 108652. [CrossRef] [PubMed] [Google Scholar]
- Rutkai I, Mayer MG, Hellmers LM, et al. Neuropathology and virus in brain of SARS-CoV-2 infected non-human primates. Nat Commun 2022; 13 : 1745. [CrossRef] [PubMed] [Google Scholar]
- Finlay JB, Brann DH, Abi Hachem R, et al. Persistent post-COVID-19 smell loss is associated with immune cell infiltration and altered gene expression in olfactory epithelium. Sci Transl Med 2022; 14 : eadd0484. [CrossRef] [PubMed] [Google Scholar]
- Klimek L, Hagemann J, Döge J, et al. Olfactory and gustatory disorders in COVID-19. Allergo J Int 2022; 31 : 243–50. [CrossRef] [PubMed] [Google Scholar]
- Parker JK, Kelly CE, Gane SB. Insights into the molecular triggers of parosmia based on gas chromatography olfactometry. Commun Med 2022; 2 : 58. [CrossRef] [PubMed] [Google Scholar]
- Doty RL, Shaman P, Kimmelman CP, et al. University of pennsylvania smell identification test: A rapid quantitative olfactory function test for the clinic. Laryngoscope 1984 ; 94 : 176–178. [CrossRef] [PubMed] [Google Scholar]
- Hintschich CA, Dietz M, Haehner A, et al. Topical Administration of Mometasone Is Not Helpful in Post-COVID-19 Olfactory Dysfunction. Life 2022; 12 : 1483. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.