Open Access
Med Sci (Paris)
Volume 39, Number 2, Février 2023
Page(s) 129 - 136
Section M/S Revues
Published online 17 February 2023
  1. Gerri C, McCarthy A, Alanis-Lobato G, et al. Initiation of a conserved trophectoderm program in human, cow and mouse embryos. Nature 2020; 587 : 443–47. [CrossRef] [PubMed] [Google Scholar]
  2. Roode M, Blair K, Snell P, et al. Human hypoblast formation is not dependent on FGF signalling. Dev Biol 2012 ; 361 : 358–363. [CrossRef] [PubMed] [Google Scholar]
  3. Niakan KK, Eggan K. Analysis of human embryos from zygote to blastocyst reveals distinct gene expression patterns relative to the mouse. Dev Biol 2013 ; 375 : 54–64. [CrossRef] [PubMed] [Google Scholar]
  4. Yan L, Yang M, Guo H, et al. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol 2013 ; 20 : 1131–1139. [CrossRef] [PubMed] [Google Scholar]
  5. Blakeley P, Fogarty NME, del Valle I, et al. Defining the three cell lineages of the human blastocyst by single-cell RNA-seq. Development 2015 ; 142 : 3151–3165. [Google Scholar]
  6. Petropoulos S, Panula SP, Schell JP, et al. Single-cell RNA sequencing: revealing human pre-implantation development, pluripotency and germline development. J Intern Med 2016 ; 280 : 252–264. [CrossRef] [PubMed] [Google Scholar]
  7. Meistermann D, Loubersac S, Reigner A, et al. Spatio-temporal analysis of human preimplantation development reveals dynamics of epiblast and trophectoderm. bioRxiv 2019; 604751. [Google Scholar]
  8. Aberkane A, Essahib W, Spits C, et al. Expression of adhesion and extracellular matrix genes in human blastocysts upon attachment in a 2D co-culture system. Mol Hum Reprod 2018 ; 24 : 375–387. [PubMed] [Google Scholar]
  9. Fogarty NME, McCarthy A, Snijders KE, et al. Genome editing reveals a role for OCT4 in human embryogenesis. Nature 2017 ; 550 : 67–73. [CrossRef] [PubMed] [Google Scholar]
  10. Shahbazi MN, Jedrusik A, Vuoristo S, et al. Self-organization of the human embryo in the absence of maternal tissues. Nat Cell Biol 2016 ; 18 : 700–708. [CrossRef] [PubMed] [Google Scholar]
  11. Deglincerti A, Etoc F, Guerra MC, et al. Self-organization of human embryonic stem cells on micropatterns. Nat Protoc 2016 ; 11 : 2223–2232. [CrossRef] [PubMed] [Google Scholar]
  12. Xiang L, Yin Y, Zheng Y, et al. A developmental landscape of 3D-cultured human pre-gastrulation embryos. Nature 2020; 577 : 537–42. [CrossRef] [PubMed] [Google Scholar]
  13. Okae H, Toh H, Sato T, et al. Derivation of Human Trophoblast Stem Cells. Cell Stem Cell 2018 ; 22 : 50–63.e6. [CrossRef] [PubMed] [Google Scholar]
  14. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998 ; 282 : 1145–1147. [Google Scholar]
  15. Takashima Y, Guo G, Loos R, et al. Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell 2014 ; 158 : 1254–1269. [CrossRef] [PubMed] [Google Scholar]
  16. Theunissen TW, Powell BE, Wang H, et al. Systematic Identification of Culture Conditions for Induction and Maintenance of Naive Human Pluripotency. Cell Stem Cell 2014 ; 15 : 471–487. [CrossRef] [PubMed] [Google Scholar]
  17. Kilens S, Meistermann D, Moreno D, et al. Parallel derivation of isogenic human primed and naive induced pluripotent stem cells. Nat Commun 2018 ; 9 : 360. [CrossRef] [PubMed] [Google Scholar]
  18. Liu X, Nefzger CM, Rossello FJ, et al. Comprehensive characterization of distinct states of human naive pluripotency generated by reprogramming. Nat Methods 2017 ; 14 : 1055–1062. [CrossRef] [PubMed] [Google Scholar]
  19. Vallot C, Patrat C, Collier AJ, et al. XACT Noncoding RNA Competes with XIST in the Control of X Chromosome Activity during Human Early Development. Cell Stem Cell 2017 ; 20 : 102–111. [CrossRef] [PubMed] [Google Scholar]
  20. Meistermann D, Bruneau A, Loubersac S, et al. Integrated pseudotime analysis of human pre-implantation embryo single-cell transcriptomes reveals the dynamics of lineage specification. Cell Stem Cell 2021; 28 : 1625–40.e6. [CrossRef] [PubMed] [Google Scholar]
  21. Radley A, Corujo-Simon E, Nichols J, et al. Entropy sorting of single-cell RNA sequencing data reveals the inner cell mass in the human pre-implantation embryo. Stem Cell Rep 2022; S2213671122004568. [Google Scholar]
  22. Linneberg-Agerholm M, Wong YF, Romero Herrera JA, et al. Naive human pluripotent stem cells respond to Wnt, Nodal and LIF signalling to produce expandable naive extra-embryonic endoderm. Development 2019 : 146. [Google Scholar]
  23. Guan J, Wang G, Wang J, et al. Chemical reprogramming of human somatic cells to pluripotent stem cells. Nature 2022; 605 : 325–31. [CrossRef] [PubMed] [Google Scholar]
  24. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981 ; 292 : 154–156. [CrossRef] [PubMed] [Google Scholar]
  25. Castel G, Meistermann D, Bretin B, et al. Induction of Human Trophoblast Stem Cells from Somatic Cells and Pluripotent Stem Cells. Cell Rep 2020; 33 : 108419. [CrossRef] [PubMed] [Google Scholar]
  26. Turco MY, Gardner L, Kay RG, et al. Trophoblast organoids as a model for maternal-fetal interactions during human placentation. Nature 2018 ; 564 : 263–267. [CrossRef] [PubMed] [Google Scholar]
  27. Amita M, Adachi K, Alexenko AP, et al. Complete and unidirectional conversion of human embryonic stem cells to trophoblast by BMP4. Proc Natl Acad Sci USA 2013 ; 110 : E1212–E1221. [CrossRef] [PubMed] [Google Scholar]
  28. Cinkornpumin JK, Kwon SY, Guo Y, et al. Naive Human Embryonic Stem Cells Can Give Rise to Cells with a Trophoblast-like Transcriptome and Methylome. Stem Cell Rep 2020; 15 : 198–213. [CrossRef] [Google Scholar]
  29. Dong C, Beltcheva M, Gontarz P, et al. Derivation of trophoblast stem cells from naïve human pluripotent stem cells. Elife 2020; 9 : e52504. [CrossRef] [PubMed] [Google Scholar]
  30. Karvas RM, Khan SA, Verma S, et al. Stem-cell-derived trophoblast organoids model human placental development and susceptibility to emerging pathogens. Cell Stem Cell 2022; 29 : 810–25.e8. [CrossRef] [PubMed] [Google Scholar]
  31. Rivron NC, Frias-Aldeguer J, Vrij EJ, et al. Blastocyst-like structures generated solely from stem cells. Nature 2018 ; 557 : 106–111. [CrossRef] [PubMed] [Google Scholar]
  32. Kagawa H, Javali A, Khoei HH, et al. Human blastoids model blastocyst development and implantation. Nature 2022; 601 : 600–5. [CrossRef] [PubMed] [Google Scholar]
  33. Yu L, Wei Y, Duan J, et al. Blastocyst-like structures generated from human pluripotent stem cells. Nature 2021; 591 : 620–6. [CrossRef] [PubMed] [Google Scholar]
  34. Yanagida A, Spindlow D, Nichols J, et al. Naive stem cell blastocyst model captures human embryo lineage segregation. Cell Stem Cell 2021; 28 : 1016–22.e4. [CrossRef] [PubMed] [Google Scholar]
  35. Zhao C, Reyes AP, Schell JP, et al. Reprogrammed blastoids contain amnion-like cells but not trophectoderm. Developmental Biology, 2021. [Google Scholar]
  36. Moris N, Anlas K, Brink SC van den, et al. An in vitro model of early anteroposterior organization during human development. Nature 2020; 582 : 410–5. [CrossRef] [PubMed] [Google Scholar]
  37. Arias AM, Marikawa Y, Moris N. Gastruloids: Pluripotent stem cell models of mammalian gastrulation and embryo engineering. Dev Biol 2022; 488 : 35–46. [CrossRef] [PubMed] [Google Scholar]
  38. Taubenschmid-Stowers J, Rostovskaya M, Santos F, et al. 8C-like cells capture the human zygotic genome activation program in vitro. Cell Stem Cell 2022; 29 : 449–59.e6. [CrossRef] [PubMed] [Google Scholar]
  39. Mazid MdA, Ward C, Luo Z, et al. Rolling back human pluripotent stem cells to an eight-cell embryo-like stage. Nature 2022; 605 : 315–24. [CrossRef] [PubMed] [Google Scholar]
  40. Reignier A, Loubersac S, Lammers J, et al. Recherche sur l’embryon humain : le point après la révision de la Recherche sur l’embryon humain : le point après la révision de la loi de bioéthique de 2021. La Lettre du Gynécologue 2022; 437. [Google Scholar]
  41. Lovell-Badge R, Anthony E, Barker RA, et al. ISSCR Guidelines for Stem Cell Research and Clinical Translation: The 2021 update. Stem Cell Rep 2021; 16 : 1398–408. [CrossRef] [Google Scholar]
  42. Amadei G, Handford CE, Qiu C, et al. Embryo model completes gastrulation to neurulation and organogenesis. Nature 2022; 610 : 143–53. [CrossRef] [PubMed] [Google Scholar]
  43. Tarazi S, Aguilera-Castrejon A, Joubran C, et al. Post-gastrulation synthetic embryos generated ex utero from mouse naive ESCs. Cell 2022; 185 : 3290–306.e25. [CrossRef] [PubMed] [Google Scholar]
  44. Goedel A, Lanner F. A peek into the black box of human embryology. Nature 2021; 600 : 223–4. [CrossRef] [PubMed] [Google Scholar]
  45. Schoenwolf GC, Bleyl SB, Brauer PR, Francis-West PH. Larsen’s Human Embryology - 6th ed. New York : Elsevier, 2020. [Google Scholar]
  46. Xu RH, Chen X, Li DS, et al. BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat Biotechnol 2002 ; 20 : 1261–1264. [CrossRef] [PubMed] [Google Scholar]
  47. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006 ; 126 : 663–676. [CrossRef] [PubMed] [Google Scholar]
  48. Shao Y, Taniguchi K, Townshend RF, et al. A pluripotent stem cell-based model for post-implantation human amniotic sac development. Nat Commun 2017 ; 8 : 208. [CrossRef] [PubMed] [Google Scholar]
  49. Haider S, Meinhardt G, Saleh L, et al. Self-Renewing Trophoblast Organoids Recapitulate the Developmental Program of the Early Human Placenta. Stem Cell Rep 2018 ; 11 : 537–551. [CrossRef] [Google Scholar]
  50. Liu X, Ouyang JF, Rossello FJ, et al. Reprogramming roadmap reveals route to human induced trophoblast stem cells. Nature 2020; 586 : 101–7. [CrossRef] [PubMed] [Google Scholar]
  51. Tyser RCV, Mahammadov E, Nakanoh S, et al. Single-cell transcriptomic characterization of a gastrulating human embryo. Nature 2021; 600 : 285–9. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.