Free Access
Med Sci (Paris)
Volume 38, Number 13, Decembre 2022
Les Cahiers de Myologie
Page(s) 13 - 16
Section Mises au point
Published online 16 January 2023
  1. Brais B, Bouchard JP, Xie YG, et al. Short GCG expansions in the PABP2 gene cause oculopharyngeal muscular dystrophy. Nat Genet 1998 ; 18 : 164–167. [Google Scholar]
  2. Banerjee A, Apponi LH, Pavlath GK, et al. PABPN1: Molecular function and muscle disease. FEBS J 2013 ; 280 : 4230–4250. [CrossRef] [PubMed] [Google Scholar]
  3. Gidaro T, Negroni E, Perié S, et al. Atrophy, fibrosis, and increased PAX7-positive cells in pharyngeal muscles of oculopharyngeal muscular dystrophy patients. J Neuropathol Exp Neurol 2013 ; 72 : 234–243. [Google Scholar]
  4. Tomé FM, Fardeau M. Nuclear inclusions in oculopharyngeal dystrophy. Acta Neuropathol 1980 ; 49 : 85–87. [CrossRef] [PubMed] [Google Scholar]
  5. Richard P, Trollet C, Stojkovic T, et al. Correlation between PABPN1 genotype and disease severity in oculopharyngeal muscular dystrophy. Neurology 2017 ; 88 : 359–365. [Google Scholar]
  6. Abu-Baker A, Messaed C, Laganiere J, et al. Involvement of the ubiquitin-proteasome pathway and molecular chaperones in oculopharyngeal muscular dystrophy. Hum Mol Genet 2003 ; 12 : 2609–2623. [CrossRef] [PubMed] [Google Scholar]
  7. Anvar SY, Hoen PA’t, Venema A, et al. Deregulation of the ubiquitin-proteasome system is the predominant molecular pathology in OPMD animal models and patients. Skelet Muscle 2011 ; 1 : 15. [Google Scholar]
  8. Chartier A, Klein P, Pierson S, et al. Mitochondrial Dysfunction Reveals the Role of mRNA Poly(A) Tail Regulation in Oculopharyngeal Muscular Dystrophy Pathogenesis. PLoS Genet 2015 ; 11 : [Google Scholar]
  9. Marie-Josée Sasseville A, Caron AW, Bourget L, et al. The dynamism of PABPN1 nuclear inclusions during the cell cycle. Neurobiol Dis 2006; 23 : 621–629. [Google Scholar]
  10. Malerba A, Roth F, Harish P, et al. Pharmacological modulation of the ER stress response ameliorates oculopharyngeal muscular dystrophy. Hum Mol Genet 2019 ; 10 : 1694–1708. [CrossRef] [PubMed] [Google Scholar]
  11. Abu-Baker A, Laganiere S, Fan X, et al. Cytoplasmic targeting of mutant poly(A)-binding protein nuclear 1 suppresses protein aggregation and toxicity in oculopharyngeal muscular dystrophy. Traffic 2005 ; 6 : 766–779. [Google Scholar]
  12. Bao YP, Sarkar S, Uyama E, et al. Congo red, doxycycline, and HSP70 overexpression reduce aggregate formation and cell death in cell models of oculopharyngeal muscular dystrophy. J Med Genet 2004 ; 41 : 47–51. [Google Scholar]
  13. Davies JE, Rubinsztein DC. Over-expression of BCL2 rescues muscle weakness in a mouse model of oculopharyngeal muscular dystrophy. Hum Mol Genet 2011 ; 20 : 1154–1163. [CrossRef] [PubMed] [Google Scholar]
  14. Fan X, Dion P, Laganiere J, et al. Oligomerization of polyalanine expanded PABPN1 facilitates nuclear protein aggregation that is associated with cell death. Hum Mol Genet 2001 ; 10 : 2341–2351. [CrossRef] [PubMed] [Google Scholar]
  15. Argov Z, Gliko-Kabir I, Brais B, et al. Intravenous trehalose improves dysphagia and muscle function in oculopharyngeal muscular dystrophy (OPMD): preliminary results of 24 weeks open label phase 2 trial (S28.004). Neurology 2016; 86. [Google Scholar]
  16. Ribot C, Soler C, Chartier A, et al. Activation of the ubiquitin-proteasome system contributes to oculopharyngeal muscular dystrophy through muscle atrophy. PLoS Genet 2022; 18 : e1010015. [Google Scholar]
  17. Vest KE, Phillips BL, Banerjee A, et al. Novel mouse models of oculopharyngeal muscular dystrophy (OPMD) reveal early onset mitochondrial defects and suggest loss of PABPN1 may contribute to pathology. Hum Mol Genet 2017 ; 26 : 3235–3252. [CrossRef] [PubMed] [Google Scholar]
  18. Roth F, Dhiab J, Boulinguiez A, et al. Assessment of PABPN1 nuclear inclusions on a large cohort of patients and in a human xenograft model of oculopharyngeal muscular dystrophy. Acta Neuropathol 2022; (in press). [PubMed] [Google Scholar]
  19. Tavanez JP, Bengoechea R, Berciano MT, et al. Hsp70 chaperones and type I PRMTs are sequestered at intranuclear inclusions caused by polyalanine expansions in PABPN1. PLoS One 2009 ; 4 : e6418. [Google Scholar]
  20. Calado A, Tomé FM, Brais B, et al. Nuclear inclusions in oculopharyngeal muscular dystrophy consist of poly(A) binding protein 2 aggregates which sequester poly(A) RNA. Hum Mol Genet 2000 ; 9 : 2321–2328. [CrossRef] [PubMed] [Google Scholar]
  21. Klein P, Oloko M, Roth F, et al. Nuclear poly(A)-binding protein aggregates misplace a pre-mRNA outside of SC35 speckle causing its abnormal splicing. Nucleic Acids Res 2016 ; 44 : 10929–10945. [Google Scholar]
  22. Apponi LH, Corbett AH, Pavlath GK. Control of mRNA stability contributes to low levels of nuclear poly(A) binding protein 1 (PABPN1) in skeletal muscle. Skeletal Muscle 2013 ; 3 : 23. [Google Scholar]
  23. Périé S, Trollet C, Mouly V, et al. Autologous myoblast transplantation for oculopharyngeal muscular dystrophy: a phase I/IIa clinical study. Mol Ther 2014 ; 22 : 219–225. [Google Scholar]
  24. Malerba A, Klein P, Lu-Nguyen N, et al. Established PABPN1 intranuclear inclusions in OPMD muscle can be efficiently reversed by AAV-mediated knockdown and replacement of mutant expanded PABPN1. Hum Mol Genet 2019 ; 28 : 3301–3308. [CrossRef] [PubMed] [Google Scholar]
  25. Malerba A, Klein P, Bachtarzi H, et al. PABPN1 gene therapy for oculopharyngeal muscular dystrophy. Nat Commun 2017 ; 8 : 14848. [Google Scholar]
  26. Strings-Ufombah V, Malerba A, Kao S-C, et al. BB-301: a silence and replace AAV-based vector for the treatment of oculopharyngeal muscular dystrophy. Mol Ther Nucleic Acids 2021; 24 : 67–78. [Google Scholar]
  27. Davies JE, Sarkar S, Rubinsztein DC. Trehalose reduces aggregate formation and delays pathology in a transgenic mouse model of oculopharyngeal muscular dystrophy. Hum Mol Genet 2006 ; 15 : 23–31. [CrossRef] [PubMed] [Google Scholar]
  28. Trollet C, Boulinguiez A, Roth F, et al. Oculopharyngeal muscular dystrophy. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews®. Seattle (WA) : University of Washington, Seattle, 1993 :. [Google Scholar]
  29. Mayer MP, Bukau B. Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 2005 ; 62 : 670–684. [CrossRef] [PubMed] [Google Scholar]
  30. Ni M, Zhang Y, Lee AS. Beyond the endoplasmic reticulum: atypical GRP78 in cell viability, signaling and therapeutic targeting. Biochem J 2011 ; 434 : 181–188. [CrossRef] [PubMed] [Google Scholar]
  31. Boulinguiez A, Staels B, Duez H, et al. Mitochondria and endoplasmic reticulum: targets for a better insulin sensitivity in skeletal muscle?. Biochim Biophys Acta 2017 ; 9 : 901–916. [CrossRef] [Google Scholar]
  32. Wang L, Popko B, Tixier E, et al. Guanabenz, which enhances the unfolded protein response, ameliorates mutant SOD1-induced amyotrophic lateral sclerosis. Neurobiol Dis 2014 ; 71 : 317–324. [Google Scholar]
  33. Raz V, Dickson G, Hoen PAC’t. Dysfunctional transcripts are formed by alternative polyadenylation in OPMD. Oncotarget 2017; 8 : 73516–73528. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.