Free Access
Issue
Med Sci (Paris)
Volume 38, Number 13, Decembre 2022
Les Cahiers de Myologie
Page(s) 6 - 12
Section Prix SFM Impulsion
DOI https://doi.org/10.1051/medsci/2022172
Published online 16 January 2023
  1. Hook SS, Orian A, Cowley SM, et al. Histone deacetylase 6 binds polyubiquitin through its zinc finger (PAZ domain) and copurifies with deubiquitinating enzymes. Proc Natl Acad Sci USA 2002 ; 99 : 13425–13430. [Google Scholar]
  2. Seigneurin-Berny D, Verdel A, Curtet S, et al. Identification of components of the murine histone deacetylase 6 complex: link between acetylation and ubiquitination signaling pathways. Mol Cell Biol 2001 ; 21 : 8035–8044. [Google Scholar]
  3. Boyault C, Zhang Y, Fritah S, et al. HDAC6 controls major cell response pathways to cytotoxic accumulation of protein aggregates. Genes Dev 2007 ; 21 : 2172–2181. [CrossRef] [PubMed] [Google Scholar]
  4. Hubbert C, Guardiola A, Shao R, et al. HDAC6 is a microtubule-associated deacetylase. Nature 2002 ; 417 : 455–458. [Google Scholar]
  5. Janke C, Bulinski JCPost-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat Rev Mol Cell Biol 2011 ; 12 : 773–786. [Google Scholar]
  6. Kovacs JJ, Murphy PJM, Gaillard S, et al. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell 2005 ; 18 : 601–607. [Google Scholar]
  7. Bettica P, Petrini S, D’Oria V, et al. Histological effects of givinostat in boys with Duchenne muscular dystrophy. Neuromuscul Disord 2016 ; 26 : 643–649. [Google Scholar]
  8. Consalvi S, Mozzetta C, Bettica P, et al. Preclinical studies in the mdx mouse model of duchenne muscular dystrophy with the histone deacetylase inhibitor givinostat. Mol Med 2013 ; 19 : 79–87. [Google Scholar]
  9. Minetti GC, Colussi C, Adami R, et al. Functional and morphological recovery of dystrophic muscles in mice treated with deacetylase inhibitors. Nat Med 2006 ; 12 : 1147–1150. [Google Scholar]
  10. Liu H, Yazdani A, Murray LM, et al. The Smn-independent beneficial effects of trichostatin A on an intermediate mouse model of spinal muscular atrophy. PLoS One 2014 ; 9 : e101225. [Google Scholar]
  11. Zhang Y, Kwon S, Yamaguchi T, et al. Mice lacking histone deacetylase 6 have hyperacetylated tubulin but are viable and develop normally. Mol Cell Biol 2008 ; 28 : 1688–1701. [Google Scholar]
  12. Ratti F, Ramond F, Moncollin V, et al. Histone deacetylase 6 is a FoxO transcription factor-dependent effector in skeletal muscle atrophy. J Biol Chem 2015 ; 290 : 4215–4224. [CrossRef] [PubMed] [Google Scholar]
  13. Haggarty SJ, Koeller KM, Wong JC, et al. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc Natl Acad Sci USA 2003 ; 100 : 4389–4394. [Google Scholar]
  14. Butler KV, Kalin J, Brochier C, et al. Rational design and simple chemistry yield a superior, neuroprotective HDAC6 inhibitor, tubastatin A. J Am Chem Soc 2010 ; 132 : 10842–10846. [CrossRef] [PubMed] [Google Scholar]
  15. Ydewalle C d’, Krishnan J, Chiheb DM, et al. HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1-induced Charcot-Marie-Tooth disease. Nat Med 2011; 17 : 968–974. [Google Scholar]
  16. Amengual JE, Lue JK, Ma H, et al. First-in-Class Selective HDAC6 Inhibitor (ACY-1215) Has a Highly Favorable Safety Profile in Patients with Relapsed and Refractory Lymphoma. Oncologist 2021; 26 : 184–e366. [Google Scholar]
  17. Ota S, Zhou ZQ, Romero MP, et al. HDAC6 deficiency or inhibition blocks FGFR3 accumulation and improves bone growth in a model of achondroplasia. Hum Mol Genet 2016 ; 25 : 4227–4243. [CrossRef] [PubMed] [Google Scholar]
  18. Vishwakarma S, Iyer LR, Muley M, et al. Tubastatin, a selective histone deacetylase 6 inhibitor shows anti-inflammatory and anti-rheumatic effects. Int Immunopharmacol 2013 ; 16 : 72–78. [CrossRef] [PubMed] [Google Scholar]
  19. Taes I, Timmers M, Hersmus N, et al. Hdac6 deletion delays disease progression in the SOD1G93A mouse model of ALS. Hum Mol Genet 2013 ; 22 : 1783–1790. [CrossRef] [PubMed] [Google Scholar]
  20. Mo Z, Zhao X, Liu H, et al. Aberrant GlyRS-HDAC6 interaction linked to axonal transport deficits in Charcot-Marie-Tooth neuropathy. Nat Commun 2018 ; 9 : 1007. [Google Scholar]
  21. Ralston E, Lu Z, Ploug TThe organization of the Golgi complex and microtubules in skeletal muscle is fiber type-dependent. J Neurosci 1999 ; 19 : 10694–10705. [Google Scholar]
  22. Jasmin BJ, Changeux JP, Cartaud JCompartmentalization of cold-stable and acetylated microtubules in the subsynaptic domain of chick skeletal muscle fibre. Nature 1990 ; 344 : 673–675. [Google Scholar]
  23. Schmidt N, Basu S, Sladecek S, et al. Agrin regulates CLASP2-mediated capture of microtubules at the neuromuscular junction synaptic membrane. J Cell Biol 2012 ; 198 : 421–437. [CrossRef] [PubMed] [Google Scholar]
  24. Osseni A, Ravel-Chapuis A, Thomas JL, et al. HDAC6 regulates microtubule stability and clustering of AChRs at neuromuscular junctions. J Cell Biol 2020; 219. [Google Scholar]
  25. Osseni A, Ravel-Chapuis A, Scionti I, et al. Pharmacological inhibition of HDAC6 downregulates TGF-β via Smad2/3 acetylation and improves dystrophin-deficient muscles. 2022; 2022; 13 : 7108. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.