Accès gratuit
Numéro |
Med Sci (Paris)
Volume 38, Decembre 2022
Les Cahiers de Myologie
|
|
---|---|---|
Page(s) | 6 - 12 | |
Section | Prix SFM Impulsion | |
DOI | https://doi.org/10.1051/medsci/2022172 | |
Publié en ligne | 16 janvier 2023 |
- Hook SS, Orian A, Cowley SM, et al. Histone deacetylase 6 binds polyubiquitin through its zinc finger (PAZ domain) and copurifies with deubiquitinating enzymes. Proc Natl Acad Sci USA 2002 ; 99 : 13425–13430. [CrossRef] [PubMed] [Google Scholar]
- Seigneurin-Berny D, Verdel A, Curtet S, et al. Identification of components of the murine histone deacetylase 6 complex: link between acetylation and ubiquitination signaling pathways. Mol Cell Biol 2001 ; 21 : 8035–8044. [CrossRef] [PubMed] [Google Scholar]
- Boyault C, Zhang Y, Fritah S, et al. HDAC6 controls major cell response pathways to cytotoxic accumulation of protein aggregates. Genes Dev 2007 ; 21 : 2172–2181. [CrossRef] [PubMed] [Google Scholar]
- Hubbert C, Guardiola A, Shao R, et al. HDAC6 is a microtubule-associated deacetylase. Nature 2002 ; 417 : 455–458. [CrossRef] [PubMed] [Google Scholar]
- Janke C, Bulinski JCPost-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat Rev Mol Cell Biol 2011 ; 12 : 773–786. [CrossRef] [PubMed] [Google Scholar]
- Kovacs JJ, Murphy PJM, Gaillard S, et al. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell 2005 ; 18 : 601–607. [CrossRef] [PubMed] [Google Scholar]
- Bettica P, Petrini S, D’Oria V, et al. Histological effects of givinostat in boys with Duchenne muscular dystrophy. Neuromuscul Disord 2016 ; 26 : 643–649. [CrossRef] [PubMed] [Google Scholar]
- Consalvi S, Mozzetta C, Bettica P, et al. Preclinical studies in the mdx mouse model of duchenne muscular dystrophy with the histone deacetylase inhibitor givinostat. Mol Med 2013 ; 19 : 79–87. [CrossRef] [PubMed] [Google Scholar]
- Minetti GC, Colussi C, Adami R, et al. Functional and morphological recovery of dystrophic muscles in mice treated with deacetylase inhibitors. Nat Med 2006 ; 12 : 1147–1150. [CrossRef] [PubMed] [Google Scholar]
- Liu H, Yazdani A, Murray LM, et al. The Smn-independent beneficial effects of trichostatin A on an intermediate mouse model of spinal muscular atrophy. PLoS One 2014 ; 9 : e101225. [CrossRef] [PubMed] [Google Scholar]
- Zhang Y, Kwon S, Yamaguchi T, et al. Mice lacking histone deacetylase 6 have hyperacetylated tubulin but are viable and develop normally. Mol Cell Biol 2008 ; 28 : 1688–1701. [CrossRef] [PubMed] [Google Scholar]
- Ratti F, Ramond F, Moncollin V, et al. Histone deacetylase 6 is a FoxO transcription factor-dependent effector in skeletal muscle atrophy. J Biol Chem 2015 ; 290 : 4215–4224. [CrossRef] [PubMed] [Google Scholar]
- Haggarty SJ, Koeller KM, Wong JC, et al. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc Natl Acad Sci USA 2003 ; 100 : 4389–4394. [CrossRef] [PubMed] [Google Scholar]
- Butler KV, Kalin J, Brochier C, et al. Rational design and simple chemistry yield a superior, neuroprotective HDAC6 inhibitor, tubastatin A. J Am Chem Soc 2010 ; 132 : 10842–10846. [CrossRef] [PubMed] [Google Scholar]
- Ydewalle C d’, Krishnan J, Chiheb DM, et al. HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1-induced Charcot-Marie-Tooth disease. Nat Med 2011; 17 : 968–974. [CrossRef] [PubMed] [Google Scholar]
- Amengual JE, Lue JK, Ma H, et al. First-in-Class Selective HDAC6 Inhibitor (ACY-1215) Has a Highly Favorable Safety Profile in Patients with Relapsed and Refractory Lymphoma. Oncologist 2021; 26 : 184–e366. [CrossRef] [PubMed] [Google Scholar]
- Ota S, Zhou ZQ, Romero MP, et al. HDAC6 deficiency or inhibition blocks FGFR3 accumulation and improves bone growth in a model of achondroplasia. Hum Mol Genet 2016 ; 25 : 4227–4243. [CrossRef] [PubMed] [Google Scholar]
- Vishwakarma S, Iyer LR, Muley M, et al. Tubastatin, a selective histone deacetylase 6 inhibitor shows anti-inflammatory and anti-rheumatic effects. Int Immunopharmacol 2013 ; 16 : 72–78. [CrossRef] [PubMed] [Google Scholar]
- Taes I, Timmers M, Hersmus N, et al. Hdac6 deletion delays disease progression in the SOD1G93A mouse model of ALS. Hum Mol Genet 2013 ; 22 : 1783–1790. [CrossRef] [PubMed] [Google Scholar]
- Mo Z, Zhao X, Liu H, et al. Aberrant GlyRS-HDAC6 interaction linked to axonal transport deficits in Charcot-Marie-Tooth neuropathy. Nat Commun 2018 ; 9 : 1007. [CrossRef] [PubMed] [Google Scholar]
- Ralston E, Lu Z, Ploug TThe organization of the Golgi complex and microtubules in skeletal muscle is fiber type-dependent. J Neurosci 1999 ; 19 : 10694–10705. [CrossRef] [PubMed] [Google Scholar]
- Jasmin BJ, Changeux JP, Cartaud JCompartmentalization of cold-stable and acetylated microtubules in the subsynaptic domain of chick skeletal muscle fibre. Nature 1990 ; 344 : 673–675. [CrossRef] [PubMed] [Google Scholar]
- Schmidt N, Basu S, Sladecek S, et al. Agrin regulates CLASP2-mediated capture of microtubules at the neuromuscular junction synaptic membrane. J Cell Biol 2012 ; 198 : 421–437. [CrossRef] [PubMed] [Google Scholar]
- Osseni A, Ravel-Chapuis A, Thomas JL, et al. HDAC6 regulates microtubule stability and clustering of AChRs at neuromuscular junctions. J Cell Biol 2020; 219. [Google Scholar]
- Osseni A, Ravel-Chapuis A, Scionti I, et al. Pharmacological inhibition of HDAC6 downregulates TGF-β via Smad2/3 acetylation and improves dystrophin-deficient muscles. 2022; 2022; 13 : 7108. [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.