Open Access
Issue |
Med Sci (Paris)
Volume 38, Number 6-7, Juin–Juillet 2022
|
|
---|---|---|
Page(s) | 579 - 584 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2022084 | |
Published online | 29 June 2022 |
- SavaryG, PottierN, MariB, et al. La fonction d’un long ARN non codant décodée dans la fibrose pulmonaire idiopathique. Med Sci (Paris) 2019 ; 35 : 739–742. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Cruwys S, Hein P, Humphries B, et al. Drug discovery and development in idiopathic pulmonary fibrosis: challenges and opportunities. Drug Discov Today 2020; 25 : 2277–83. [CrossRef] [PubMed] [Google Scholar]
- DuchemannB, Annesi-MaesanoI, Jacobe de NauroisC, et al. Prevalence and incidence of interstitial lung diseases in a multi-ethnic county of Greater Paris. Eur Respir J 2017 ; 50 : 1602419. [CrossRef] [PubMed] [Google Scholar]
- MartinezFJ, CollardHR, PardoA, et al. Idiopathic pulmonary fibrosis. Nat Rev Dis Primer 2017 ; 3 : 17074. [CrossRef] [Google Scholar]
- HutchinsonJ, FogartyA, HubbardR, et al. Global incidence and mortality of idiopathic pulmonary fibrosis: a systematic review. Eur Respir J 2015 ; 46 : 795–806. [CrossRef] [PubMed] [Google Scholar]
- HopkinsRB, BurkeN, FellC, et al. Epidemiology and survival of idiopathic pulmonary fibrosis from national data in Canada. Eur Respir J 2016 ; 48 : 187–195. [CrossRef] [PubMed] [Google Scholar]
- WynnTA. Cellular and molecular mechanisms of fibrosis. J Pathol 2008 ; 214 : 199–210. [CrossRef] [PubMed] [Google Scholar]
- RanzieriS, Illica MagriniE, MozzoniP, et al. Idiopathic pulmonary fibrosis and occupational risk factors. Med Lav 2019 ; 110 : 407–436. [PubMed] [Google Scholar]
- Sheng G, Chen P, Wei Y, et al. Viral Infection Increases the Risk of Idiopathic Pulmonary Fibrosis: A Meta-Analysis. Chest 2020; 157 : 1175–87. [CrossRef] [PubMed] [Google Scholar]
- KropskiJA, LawsonWE, YoungLR, et al. Genetic studies provide clues on the pathogenesis of idiopathic pulmonary fibrosis. Dis Model Mech 2013 ; 6 : 9–17. [CrossRef] [PubMed] [Google Scholar]
- SpagnoloP, GrunewaldJ, du BoisRM. Genetic determinants of pulmonary fibrosis: evolving concepts. Lancet Respir Med 2014 ; 2 : 416–428. [CrossRef] [PubMed] [Google Scholar]
- EvansCM, FingerlinTE, SchwarzMI, et al. Idiopathic Pulmonary Fibrosis: A Genetic Disease That Involves Mucociliary Dysfunction of the Peripheral Airways. Physiol Rev 2016 ; 96 : 1567–1591. [CrossRef] [PubMed] [Google Scholar]
- DemouveauxB, GouyerV, MagnienM, et al. La structure des mucines conditionne les propriétés viscoélastiques des gels de mucus. Med Sci (Paris) 2018 ; 34 : 806–812. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- PortalC, GouyerV, GottrandF, et al. Ocular mucins in dry eye disease. Exp Eye Res 2019 ; 186 : 107724. [CrossRef] [PubMed] [Google Scholar]
- DesseynJ-L, PortalC, GottrandF, et al. Différenciation des cellules à mucus et régulation de la mucine gélifiante Muc5b : un nouvel outil pour des études ex vivo et précliniques in vivo. Med Sci (Paris) 2017 ; 33 : 478–480. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- RoyMG, Livraghi-ButricoA, FletcherAA, et al. Muc5b is required for airway defence. Nature 2014 ; 505 : 412–416. [CrossRef] [PubMed] [Google Scholar]
- Cottin V, Bonniaud P, Cadranel J, et al. [French practical guidelines for the diagnosis and management of IPF - 2021 update, short version]. Rev Mal Respir 2022; S0761–8425(22)00026–2. [Google Scholar]
- Raghu G, Rochwerg B, Zhang Y, et al. An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline: Treatment of Idiopathic Pulmonary Fibrosis. An Update of the Clinical Practice Guideline. Am J Respir Crit Care Med 2011 ; 2015 : 192.e3–19. [Google Scholar]
- SomogyiV, ChaudhuriN, TorrisiSE, et al. The therapy of idiopathic pulmonary fibrosis: what is next?. Eur Respir Rev 2019 ; 28 : 190021. [CrossRef] [PubMed] [Google Scholar]
- KimSY, DiggansJ, PankratzD, et al. Classification of usual interstitial pneumonia in patients with interstitial lung disease: assessment of a machine learning approach using high-dimensional transcriptional data. Lancet Respir Med 2015 ; 3 : 473–482. [CrossRef] [PubMed] [Google Scholar]
- CottinV, CrestaniB, ValeyreD, et al. Diagnosis and management of idiopathic pulmonary fibrosis: French practical guidelines. Eur Respir Rev 2014 ; 23 : 193–214. [CrossRef] [PubMed] [Google Scholar]
- LedererDJ, MartinezFJ. Idiopathic Pulmonary Fibrosis. N Engl J Med 2018 ; 378 : 1811–1823. [CrossRef] [PubMed] [Google Scholar]
- KorfeiM, StelmaszekD, MacKenzieB, et al. Comparison of the antifibrotic effects of the pan-histone deacetylase-inhibitor panobinostat versus the IPF-drug pirfenidone in fibroblasts from patients with idiopathic pulmonary fibrosis. PLoS One 2018 ; 13 : e0207915. [CrossRef] [PubMed] [Google Scholar]
- FlahertyKR, WellsAU, CottinV, et al. Nintedanib in Progressive Fibrosing Interstitial Lung Diseases. N Engl J Med 2019 ; 381 : 1718–1727. [CrossRef] [PubMed] [Google Scholar]
- Maher TM, Corte TJ, Fischer A, et al. Pirfenidone in patients with unclassifiable progressive fibrosing interstitial lung disease: a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Respir Med 2020; 8 : 147–57. [CrossRef] [PubMed] [Google Scholar]
- Behr J, Prasse A, Kreuter M, et al. Pirfenidone in patients with progressive fibrotic interstitial lung diseases other than idiopathic pulmonary fibrosis (RELIEF): a double-blind, randomised, placebo-controlled, phase 2b trial. Lancet Respir Med 2021; 9 : 476–86. [CrossRef] [PubMed] [Google Scholar]
- BlackwellTS, TagerAM, BorokZ, et al. Future directions in idiopathic pulmonary fibrosis research. An NHLBI workshop report. Am J Respir Crit Care Med 2014 ; 189 : 214–222. [CrossRef] [PubMed] [Google Scholar]
- SundarakrishnanA, ChenY, BlackLD, et al. Engineered cell and tissue models of pulmonary fibrosis. Adv Drug Deliv Rev 2018 ; 129 : 78–94. [CrossRef] [PubMed] [Google Scholar]
- SaitoA, HorieM, MickeP, et al. The Role of TGF-β Signaling in Lung Cancer Associated with Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2018 ; 19 : E3611. [CrossRef] [Google Scholar]
- Glisinski KM, Schlobohm AJ, Paramore SV, et al. Interleukin-13 disrupts type 2 pneumocyte stem cell activity. JCI Insight 2020; 5 : 131232. [CrossRef] [PubMed] [Google Scholar]
- SongC, HeL, ZhangJ, et al. Fluorofenidone attenuates pulmonary inflammation and fibrosis via inhibiting the activation of NALP3 inflammasome and IL-1β/IL-1R1/MyD88/NF-κB pathway. J Cell Mol Med 2016 ; 20 : 2064–2077. [CrossRef] [PubMed] [Google Scholar]
- Epstein Shochet G, Brook E, Israeli-Shani L, et al. Fibroblast paracrine TNF-α signaling elevates integrin A5 expression in idiopathic pulmonary fibrosis (IPF). Respir Res 2017; 18 : 122. [CrossRef] [PubMed] [Google Scholar]
- AntoniadesHN, BravoMA, AvilaRE, et al. Platelet-derived growth factor in idiopathic pulmonary fibrosis. J Clin Invest 1990 ; 86 : 1055–1064. [CrossRef] [PubMed] [Google Scholar]
- TagerAM. Autotaxin emerges as a therapeutic target for idiopathic pulmonary fibrosis: limiting fibrosis by limiting lysophosphatidic acid synthesis. Am J Respir Cell Mol Biol 2012 ; 47 : 563–565. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.