Open Access
Issue
Med Sci (Paris)
Volume 38, Number 6-7, Juin–Juillet 2022
Page(s) 570 - 578
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2022083
Published online 29 June 2022
  1. Karoulia Z, Gavathiotis E, Poulikakos PI. New perspectives for targeting RAF kinase in human cancer. Nat Rev Cancer 2017 ; 17 : 676–691. [Google Scholar]
  2. Davies H, Bignell GR, Cox C, Stephens P, et al. Mutations of the BRAF gene in human cancer. Nature 2002 ; 417 : 949–954. [CrossRef] [PubMed] [Google Scholar]
  3. Xing M.. BRAF mutation in thyroid cancer. Endocr Relat Cancer 2005 ; 12 : 245–262. [CrossRef] [PubMed] [Google Scholar]
  4. Clarke CN, Kopetz ES. BRAF mutant colorectal cancer as a distinct subset of colorectal cancer: clinical characteristics, clinical behavior, and response to targeted therapies. J Gastrointest Oncol 2015 ; 6 : 660–667. [PubMed] [Google Scholar]
  5. Tissot C, Couraud S, Tanguy R, Bringuier P-P, et al. Clinical characteristics and outcome of patients with lung cancer harboring BRAF mutations. Lung Cancer Amst Neth 2016 ; 91 : 23–28. [CrossRef] [Google Scholar]
  6. Tiacci E, Trifonov V, Schiavoni G, Holmes A, et al. BRAF mutations in hairy-cell leukemia. N Engl J Med 2011 ; 364 : 2305–2315. [CrossRef] [PubMed] [Google Scholar]
  7. Myung JK, Cho H, Park C-K, Kim S-K, et al. Analysis of the BRAF(V600E) Mutation in Central Nervous System Tumors. Transl Oncol 2012 ; 5 : 430–436. [CrossRef] [PubMed] [Google Scholar]
  8. Emile J-F, Cohen-Aubart F, Collin M, Fraitag S, et al. Histiocytosis. Lancet 2021; 398 : 157–70. [CrossRef] [PubMed] [Google Scholar]
  9. Chapman PB, Hauschild A, Robert C, Haanen JB, et al. Improved Survival with Vemurafenib in Melanoma with BRAF V600E Mutation. N Engl J Med 2011 ; 364 : 2507–2516. [CrossRef] [PubMed] [Google Scholar]
  10. Hauschild A, Grob J-J, Demidov LV, Jouary T, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet 2012 ; 380 : 358–365. [CrossRef] [PubMed] [Google Scholar]
  11. Robert C, Karaszewska B, Schachter J, Rutkowski P, et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med 2015 ; 372 : 30–39. [CrossRef] [PubMed] [Google Scholar]
  12. Kakadia S, Yarlagadda N, Awad R, Kundranda M, et al. Mechanisms of resistance to BRAF and MEK inhibitors and clinical update of US Food and Drug Administration-approved targeted therapy in advanced melanoma. OncoTargets Ther 2018 ; 11 : 7095–7107. [CrossRef] [Google Scholar]
  13. Banzi M, De Blasio S, Lallas A, Longo C, et al. Dabrafenib: a new opportunity for the treatment of BRAF V600-positive melanoma. OncoTargets Ther 2016 ; 9 : 2725–2733. [Google Scholar]
  14. Van Allen EM, Wagle N, Sucker A, Treacy D, et al. The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov 2014 ; 4 : 94–109. [CrossRef] [PubMed] [Google Scholar]
  15. Whittaker SR, Theurillat J-P, Van Allen E, Wagle N, et al. A genome-scale RNA interference screen implicates NF1 loss in resistance to RAF inhibition. Cancer Discov 2013 ; 3 : 350–362. [CrossRef] [PubMed] [Google Scholar]
  16. Smalley KSM, Lioni M, Palma MD, Xiao M, et al. Increased cyclin D1 expression can mediate BRAF inhibitor resistance in BRAF V600E-mutated melanomas. Mol Cancer Ther 2008 ; 7 : 2876–2883. [CrossRef] [PubMed] [Google Scholar]
  17. Johannessen CM, Boehm JS, Kim SY, Thomas SR, et al. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 2010 ; 468 : 968–972. [CrossRef] [PubMed] [Google Scholar]
  18. Paraiso KHT, Xiang Y, Rebecca VW, Abel EV, et al. PTEN loss confers BRAF inhibitor resistance to melanoma cells through the suppression of BIM expression. Cancer Res 2011 ; 71 : 2750–2760. [CrossRef] [PubMed] [Google Scholar]
  19. Lionarons DA, Hancock DC, Rana S, East P, et al. RAC1P29S Induces a Mesenchymal Phenotypic Switch via Serum Response Factor to Promote Melanoma Development and Therapy Resistance. Cancer Cell 2019 ; 36 : 68–83.e9. [CrossRef] [PubMed] [Google Scholar]
  20. Konieczkowski DJ, Johannessen CM, Abudayyeh O, Kim JW, et al. A melanoma cell state distinction influences sensitivity to MAPK pathway inhibitors. Cancer Discov 2014 ; 4 : 816–827. [CrossRef] [PubMed] [Google Scholar]
  21. Lecacheur M, Girard CA, Deckert M, Tartare-Deckert S. Échappement thérapeutique du mélanome : la piste biomécanique. Med Sci (Paris) 2020; 36 : 961–5. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  22. Straussman R, Morikawa T, Shee K, Barzily-Rokni M, et al. Tumor microenvironment induces innate RAF-inhibitor resistance through HGF secretion. Nature 2012 ; 487 : 500–504. [CrossRef] [PubMed] [Google Scholar]
  23. Gesbert F, Larue L. Le mélanome cutané - Des modèles rationalisés aux soins des patients. Med Sci (Paris) 2018 ; 34 : 407–416. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  24. Ohanna M, Cerezo M, Nottet N, Bille K, et al. Pivotal role of NAMPT in the switch of melanoma cells toward an invasive and drug-resistant phenotype. Genes Dev 2018 ; 32 : 448–461. [CrossRef] [PubMed] [Google Scholar]
  25. Hernandez-Davies JE, Tran TQ, Reid MA, Rosales KR, et al. Vemurafenib resistance reprograms melanoma cells towards glutamine dependence. J Transl Med 2015 ; 13 : 210. [CrossRef] [PubMed] [Google Scholar]
  26. Haq R, Shoag J, Andreu-Perez P, Yokoyama S, et al. Oncogenic BRAF Regulates Oxidative Metabolism via PGC1α and MITF. Cancer Cell 2013 ; 23 : 302–315. [CrossRef] [PubMed] [Google Scholar]
  27. Brose MS, Cabanillas ME, Cohen EEW, Wirth LJ, et al. Vemurafenib in patients with BRAF(V600E)-positive metastatic or unresectable papillary thyroid cancer refractory to radioactive iodine: a non-randomised, multicentre, open-label, phase 2 trial. Lancet Oncol 2016 ; 17 : 1272–1282. [CrossRef] [PubMed] [Google Scholar]
  28. Duquette M, Sadow PM, Husain A, Sims JN, et al. Metastasis-associated MCL1 and P16 copy number alterations dictate resistance to vemurafenib in a BRAFV600E patient-derived papillary thyroid carcinoma preclinical model. Oncotarget 2015 ; 6 : 42445–42467. [CrossRef] [PubMed] [Google Scholar]
  29. Roelli MA, Ruffieux-Daidié D, Stooss A, ElMokh O, et al. PIK3CAH1047R-induced paradoxical ERK activation results in resistance to BRAFV600E specific inhibitors in BRAFV600E PIK3CAH1047R double mutant thyroid tumors. Oncotarget 2017 ; 8 : 103207–103222. [CrossRef] [PubMed] [Google Scholar]
  30. Notarangelo T, Sisinni L, Condelli V, Landriscina M. Dual EGFR and BRAF blockade overcomes resistance to vemurafenib in BRAF mutated thyroid carcinoma cells. Cancer Cell Int 2017 ; 17 : 86. [CrossRef] [PubMed] [Google Scholar]
  31. Montero-Conde C, Ruiz-Llorente S, Dominguez JM, Knauf JA, et al. Relief of feedback inhibition of HER3 transcription by RAF and MEK inhibitors attenuates their antitumor effects in BRAF mutant thyroid carcinomas. Cancer Discov 2013 ; 3 : 520–533. [CrossRef] [PubMed] [Google Scholar]
  32. Byeon HK, Na HJ, Yang YJ, Kwon HJ, et al. c-Met-mediated reactivation of PI3K/AKT signaling contributes to insensitivity of BRAF(V600E) mutant thyroid cancer to BRAF inhibition. Mol Carcinog 2016 ; 55 : 1678–1687. [CrossRef] [PubMed] [Google Scholar]
  33. Cabanillas ME, Dadu R, Iyer P, Wanland KB, et al. Acquired Secondary RAS Mutation in BRAFV600E-Mutated Thyroid Cancer Patients Treated with BRAF Inhibitors. Am Thyroid Assoc 2020; 30 : 1288–96. [CrossRef] [PubMed] [Google Scholar]
  34. Dunn LA, Sherman EJ, Baxi SS, Tchekmedyian V, et al. Vemurafenib Redifferentiation of BRAF Mutant, RAI-Refractory Thyroid Cancers. J Clin Endocrinol Metab 2019 ; 104 : 1417–1428. [CrossRef] [PubMed] [Google Scholar]
  35. Kopetz S, Desai J, Chan E, Hecht JR, et al. PLX4032 in metastatic colorectal cancer patients with mutant BRAF tumors. J Clin Oncol 2010 ; 28 : 3534. [CrossRef] [Google Scholar]
  36. Corcoran RB, Ebi H, Turke AB, Coffee EM, et al. EGFR-mediated re-activation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discov 2012 ; 2 : 227–235. [CrossRef] [PubMed] [Google Scholar]
  37. Prahallad A, Sun C, Huang S, Di Nicolantonio F, et al. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 2012 ; 483 : 100–103. [CrossRef] [PubMed] [Google Scholar]
  38. Kopetz S, Grothey A, Yaeger R, Cutsem EV, et al. Encorafenib, Binimetinib, and Cetuximab in BRAF V600E-Mutated Colorectal Cancer. N Engl J Med 2019 ; 381 : 1632–1643. [CrossRef] [PubMed] [Google Scholar]
  39. Ahronian LG, Sennott EM, Van Allen EM, Wagle N, et al. Clinical acquired resistance to RAF inhibitor combinations in BRAF-mutant colorectal cancer through MAPK pathway alterations. Cancer Discov 2015 ; 5 : 358–367. [CrossRef] [PubMed] [Google Scholar]
  40. Xu T, Wang X, Changsong Q, Wang Z, et al. Genomic profiles of BRAF inhibitor resistance mechanisms in metastatic colorectal cancer. J Clin Oncol 2021; 39 : e15527. [CrossRef] [Google Scholar]
  41. Hyman DM, Puzanov I, Subbiah V, Faris JE, et al. Vemurafenib in Multiple Nonmelanoma Cancers with BRAF V600 Mutations. N Engl J Med 2015 ; 373 : 726–736. [CrossRef] [PubMed] [Google Scholar]
  42. Hirai N, Hatanaka Y, Hatanaka KC, Uno Y, et al. Cyclin-dependent kinase 4 upregulation mediates acquired resistance of dabrafenib plus trametinib in BRAF V600E-mutated lung cancer. Transl Lung Cancer Res 2021; 10 : 3737–44. [CrossRef] [PubMed] [Google Scholar]
  43. Facchinetti F, Lacroix L, Mezquita L, Scoazec J-Y, et al. Molecular mechanisms of resistance to BRAF and MEK inhibitors in BRAFV600E non-small cell lung cancer. Eur J Cancer 2020; 132 : 211–23. [CrossRef] [PubMed] [Google Scholar]
  44. Troussard X, Maître E, Cornet E. Hairy cell leukemia 2022: Update on diagnosis, risk-stratification, and treatment. Am J Hematol 2022; 97 : 226–36. [CrossRef] [PubMed] [Google Scholar]
  45. Tiacci E, Park JH, De Carolis L, Chung SS, et al. Targeting Mutant BRAF in Relapsed or Refractory Hairy-Cell Leukemia. N Engl J Med 2015 ; 373 : 1733–1747. [CrossRef] [PubMed] [Google Scholar]
  46. Durham BH, Getta B, Dietrich S, Taylor J, et al. Genomic analysis of hairy cell leukemia identifies novel recurrent genetic alterations. Blood 2017 ; 130 : 1644–1648. [CrossRef] [PubMed] [Google Scholar]
  47. Kreitman RJ, Moreau P, Hutchings M, Gazzah A, et al. Treatment with Combination of Dabrafenib and Trametinib in Patients with Recurrent/Refractory BRAF V600E-Mutated Hairy Cell Leukemia (HCL). Blood 2018 ; 132 : 391. [CrossRef] [Google Scholar]
  48. Tiacci E, De Carolis L, Simonetti E, Capponi M, et al. Vemurafenib plus Rituximab in Refractory or Relapsed Hairy-Cell Leukemia. N Engl J Med 2021; 384 : 1810–23. [CrossRef] [PubMed] [Google Scholar]
  49. Kaley T, Touat M, Subbiah V, Hollebecque A, et al. BRAF Inhibition in BRAFV600-Mutant Gliomas: Results From the VE-BASKET Study. J Clin Oncol 2018 ; 36 : 3477–3484. [CrossRef] [PubMed] [Google Scholar]
  50. Schreck KC, Morin A, Zhao G, Allen AN, et al. Deconvoluting Mechanisms of Acquired Resistance to RAF Inhibitors in BRAFV600E-Mutant Human Glioma. Clin Cancer Res 2021; 27 : 6197–208. [CrossRef] [PubMed] [Google Scholar]
  51. Cohen Aubart F, Emile J-F, Carrat F, Charlotte F, et al. Targeted therapies in 54 patients with Erdheim-Chester disease, including follow-up after interruption (the LOVE study). Blood 2017; 130 : 1377–80. [CrossRef] [PubMed] [Google Scholar]
  52. Diamond EL, Subbiah V, Lockhart AC, Blay J-Y, et al. Vemurafenib for BRAF V600-Mutant Erdheim-Chester Disease and Langerhans Cell Histiocytosis: Analysis of Data From the Histology-Independent, Phase 2. Open-label VE-BASKET Study. JAMA Oncol 2018 ; 4 : 384–388. [CrossRef] [PubMed] [Google Scholar]
  53. Adamopoulos C, Ahmed TA, Tucker MR, Ung PMU, et al. Exploiting Allosteric Properties of RAF and MEK Inhibitors to Target Therapy-Resistant Tumors Driven by Oncogenic BRAF Signaling. Cancer Discov 2021; 11 : 1716–35. [CrossRef] [PubMed] [Google Scholar]
  54. Rambow F, Marine J-C, Goding CR. Melanoma plasticity and phenotypic diversity: therapeutic barriers and opportunities. Genes Dev 2019 ; 33 : 1295–1318. [CrossRef] [PubMed] [Google Scholar]
  55. Lin L, Asthana S, Chan E, Bandyopadhyay S, et al. Mapping the molecular determinants of BRAF oncogene dependence in human lung cancer. Proc Natl Acad Sci U S A 2014 ; 111 : E748–E757. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.