Open Access
Med Sci (Paris)
Volume 38, Number 6-7, Juin–Juillet 2022
Page(s) 562 - 569
Section M/S Revues
Published online 29 June 2022
  1. Sullivan R, Alatise OI, Anderson BO, et al. Global cancer surgery: delivering safe, affordable, and timely cancer surgery. Lancet Oncol 2015 ; 16 : 1193–1224. [Google Scholar]
  2. Boland GM, Meric-Bernstam F. The role of surgeons in building a personalized medicine program. J Surg Oncol 2015 ; 111 : 3–8. [Google Scholar]
  3. Jordan B.. Cancer : les trois époques de la Médecine Personnalisée. Med Sci (Paris) 2017 ; 33 : 905–908. [Google Scholar]
  4. The Cancer Genome Atlas NetworkComprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 2015 ; 517 : 576–582. [Google Scholar]
  5. Leemans CR, Snijders PJF, Brakenhoff RH. The molecular landscape of head and neck cancer. Nat Rev Cancer 2018 ; 18 : 269–282. [Google Scholar]
  6. Galmiche A, Saidak Z, Bouaoud J, et al. Genomics and precision surgery for head and neck squamous cell carcinoma. Cancer Lett 2020; 481 : 45–54. [Google Scholar]
  7. Saidak Z, Lailler C, Testelin S, et al. Contribution of Genomics to the Surgical Management and Study of Oral Cancer. Ann Surg Oncol 2021; 28 : 5842–54. [Google Scholar]
  8. O’Donnell JS, Hoefsmit EP, Smyth MJ, et al. The Promise of Neoadjuvant Immunotherapy and Surgery for Cancer Treatment. Clin Cancer Res 2019 ; 25 : 5743–5751. [Google Scholar]
  9. Topalian SL, Taube JM, Pardoll DM. Neoadjuvant checkpoint blockade for cancer immunotherapy. Science 2020; 367 : eaax0182. [Google Scholar]
  10. Chow LQM. Head and Neck Cancer. N Engl J Med 2020; 382 : 60–72. [Google Scholar]
  11. Warnakulasuriya S. Oral potentially malignant disorders: A comprehensive review on clinical aspects and management. Oral Oncol 2020; 102 : 104550. [Google Scholar]
  12. Bouaoud J, Foy JP, Tortereau A, et al. Early changes in the immune microenvironment of oral potentially malignant disorders reveal an unexpected association of M2 macrophages with oral cancer free survival. Oncoimmunology 2021; 10 : 1944554. [Google Scholar]
  13. Liu MC, Oxnard GR, Klein EA, et al. Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA. Ann Oncol 2020; 31 : 745–59. [Google Scholar]
  14. Lo YMD, Han DSC, Jiang P, Chiu RWK. Epigenetics, fragmentomics, and topology of cell-free DNA in liquid biopsies. Science 2021; 372 : eaaw3616. [Google Scholar]
  15. Saidak Z, Pascual C, Bouaoud J, et al. A three-gene expression signature associated with positive surgical margins in tongue squamous cell carcinomas: Predicting surgical resectability from tumour biology?. Oral Oncol 2019 ; 94 : 115–120. [Google Scholar]
  16. Schirmer MA, Beck J, Leu M, et al. Cell-Free Plasma DNA for Disease Stratification and Prognosis in Head and Neck Cancer. Clin Chem 2018 ; 64 : 959–970. [Google Scholar]
  17. Ben-Eliyahu S. Tumor Excision as a Metastatic Russian Roulette: Perioperative Interventions to Improve Long-Term Survival of Cancer Patients. Trends Cancer 2020; 6 : 951–9. [Google Scholar]
  18. Galmiche A, Saidak Z, Bettoni J, et al. Therapeutic Perspectives for the Perioperative Period in Oral Squamous Cell Carcinoma (OSCC). Front Oral Health 2022; 2 : 764386. [Google Scholar]
  19. Lottin M, Soudet S, Fercot J, et al. Molecular Landscape of the Coagulome of Oral Squamous Cell Carcinoma. Cancers (Basel) 2022; 14 : 460. [Google Scholar]
  20. Galmiche A, Rak J, Roumenina LT, Saidak Z. Coagulome and the tumor microenvironment: an actionable interplay. Trends Cancer 2022 : S2405–8033(21)00261–2. [PubMed] [Google Scholar]
  21. Khorana AA, Mackman N, Falanga A, et al. Cancer-associated venous thromboembolism. Nat Rev Dis Primers 2022; 8 : 11. [Google Scholar]
  22. Liang YJ, Mei XY, Zeng B, et al. Prognostic role of preoperative D-dimer, fibrinogen and platelet levels in patients with oral squamous cell carcinoma. BMC Cancer 2021; 21 : 122. [Google Scholar]
  23. Caruntu A, Moraru L, Lupu M, et al. The Hidden Treasures of Preoperative Blood Assessment in Oral Cancer: A Potential Source of Biomarkers. Cancers (Basel) 2021; 13 : 4475. [Google Scholar]
  24. Budach V, Tinhofer I. Novel prognostic clinical factors and biomarkers for outcome prediction in head and neck cancer: a systematic review. Lancet Oncol 2019 ; 20 : e313–e326. [Google Scholar]
  25. Saidak Z, Lailler C, Clatot F, Galmiche A. Perineural invasion in head and neck squamous cell carcinoma: background, mechanisms, and prognostic implications. Curr Opin Otolaryngol Head Neck Surg 2020; 28 : 90–5. [Google Scholar]
  26. van Hooff SR, Leusink FK, Roepman P, et al. Validation of a gene expression signature for assessment of lymph node metastasis in oral squamous cell carcinoma. J Clin Oncol 2012 ; 30 : 4104–4110. [Google Scholar]
  27. Wang W, Lim WK, Leong HS, et al. An eleven gene molecular signature for extra-capsular spread in oral squamous cell carcinoma serves as a prognosticator of outcome in patients without nodal metastases. Oral Oncol 2015 ; 51 : 355–362. [Google Scholar]
  28. Schmidt S, Linge A, Zwanenburg A, et al. Development and Validation of a Gene Signature for Patients with Head and Neck Carcinomas Treated by Postoperative Radio(chemo)therapy. Clin Cancer Res 2018 ; 24 : 1364–1374. [Google Scholar]
  29. Brooks JM, Menezes AN, Ibrahim M, et al. Development and Validation of a Combined Hypoxia and Immune Prognostic Classifier for Head and Neck Cancer. Clin Cancer Res 2019 ; 25 : 5315–5328. [Google Scholar]
  30. Saidak Z, Clatot F, Chatelain D, Galmiche A. A gene expression profile associated with perineural invasion identifies a subset of HNSCC at risk of post-surgical recurrence. Oral Oncol 2018 ; 86 : 53–60. [Google Scholar]
  31. Clark DJ, Mao L. Understanding the surgical margin: a molecular assessment. Oral Maxillofac Surg Clin North Am 2017 ; 29 : 245–258. [Google Scholar]
  32. Pierik AS, Leemans CR, Brakenhoff RH. Resection Margins in Head and Neck Cancer Surgery: An Update of Residual Disease and Field Cancerization. Cancers (Basel) 2021; 13 : 2635. [Google Scholar]
  33. Ogrinc N, Saudemont P, Takats Z, et al. Cancer Surgery 2.0: Guidance by Real-Time Molecular Technologies. Trends Mol Med 2021; 27 : 602–15. [Google Scholar]
  34. Sanz-Garcia E, Zhao E, Bratman SV, Siu LL. Monitoring and adapting cancer treatment using circulating tumor DNA kinetics: Current research, opportunities, and challenges. Sci Adv 2022; 8 : eabi8618. [Google Scholar]
  35. Honoré N, Galot R, van Marcke C, et al. Liquid Biopsy to Detect Minimal Residual Disease: Methodology and Impact. Cancers (Basel) 2021; 13 : 5364. [Google Scholar]
  36. Wang Y, Springer S, Mulvey CL, et al. Detection of somatic mutations and HPV in the saliva and plasma of patients with head and neck squamous cell carcinomas. Sci Transl Med 2015; 7 : 293ra104. [PubMed] [Google Scholar]
  37. Romani C, Salviato E, Paderno A, et al. Genome-wide study of salivary miRNAs identifies miR-423-5p as promising diagnostic and prognostic biomarker in oral squamous cell carcinoma. Theranostics 2021; 11 : 2987–99. [Google Scholar]
  38. Fung SYH, Chan KCA, Wong EWY, et al. Droplet digital PCR of tumor suppressor methylation in serial oral rinses of patients with HNSCC. Head Neck 2021; 43 : 1812–22. [Google Scholar]
  39. Uppaluri R, Campbell KM, Egloff AM, et al. Neoadjuvant and Adjuvant Pembrolizumab in Resectable Locally Advanced, Human Papillomavirus-Unrelated Head and Neck Cancer: A Multicenter, Phase II Trial. Clin Cancer Res 2020; 26 : 5140–52. [Google Scholar]
  40. Schoenfeld JD, Hanna GJ, Jo VY, et al. Neoadjuvant Nivolumab or Nivolumab Plus Ipilimumab in Untreated Oral Cavity Squamous Cell Carcinoma: A Phase 2 Open-Label Randomized Clinical Trial. JAMA Oncol 2020; 6 : 1563–70. [Google Scholar]
  41. Marron TU, Galsky MD, Taouli B, et al. Neoadjuvant clinical trials provide a window of opportunity for cancer drug discovery. Nat Med 2022; 28 : 626–9. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.