Open Access
Med Sci (Paris)
Volume 38, Number 6-7, Juin–Juillet 2022
Page(s) 585 - 593
Section M/S Revues
Published online 29 June 2022
  1. WarburgO.. On the origin of cancer cells. Science 1956 ; 123 : 309–314. [CrossRef] [PubMed] [Google Scholar]
  2. HanahanD, WeinbergRA. Hallmarks of Cancer: The Next Generation. Cell 2011 ; 144 : 646–674. [CrossRef] [PubMed] [Google Scholar]
  3. Cordier-BussatM, ThibertC, SujobertP, et al. Même l’effet Warburg est oxydable - Coopération métabolique et développement tumoral. Med Sci (Paris) 2018 ; 34 : 701–708. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  4. Moindjie H, Rodrigues-Ferreira S, Nahmias C. Mitochondrial Metabolism in Carcinogenesis and Cancer Therapy. Cancers (Basel). 2021; 13 : 3311. [CrossRef] [PubMed] [Google Scholar]
  5. Nahacka Z, Zobalova R, Dubisova M, et al. Miro proteins connect mitochondrial function and intercellular transport. Crit Rev Biochem Mol Biol 2021; 56 : 401–25. [CrossRef] [PubMed] [Google Scholar]
  6. van SpronsenM, MikhaylovaM, LipkaJ, et al. TRAK/Milton Motor-Adaptor Proteins Steer Mitochondrial Trafficking to Axons and Dendrites. Neuron 2013 ; 77 : 485–502. [CrossRef] [PubMed] [Google Scholar]
  7. Fenton AR, Jongens TA, Holzbaur ELF. Mitochondrial adaptor TRAK2 activates and functionally links opposing kinesin and dynein motors. Nat Commun 2021; 12 : 4578. [Google Scholar]
  8. CaiQ, GerwinC, ShengZ-H. Syntabulin-mediated anterograde transport of mitochondria along neuronal processes. J Cell Biol 2005 ; 170 : 959–969. [CrossRef] [PubMed] [Google Scholar]
  9. FujitaT, MaturanaAD, IkutaJ, et al. Axonal guidance protein FEZ1 associates with tubulin and kinesin motor protein to transport mitochondria in neurites of NGF-stimulated PC12 cells. Biochem Biophys Res Commun 2007 ; 361 : 605–610. [CrossRef] [PubMed] [Google Scholar]
  10. ChoK-I, CaiY, YiH, et al. Association of the kinesin-binding domain of RanBP2 to KIF5B and KIF5C determines mitochondria localization and function. Traffic Cph Den 2007 ; 8 : 1722–1735. [CrossRef] [PubMed] [Google Scholar]
  11. HooikaasPJ, MartinM, MühlethalerT, et al. MAP7 family proteins regulate kinesin-1 recruitment and activation. J Cell Biol 2019 ; 218 : 1298–1318. [CrossRef] [PubMed] [Google Scholar]
  12. CainoMC, SeoJH, AguinaldoA, et al. A neuronal network of mitochondrial dynamics regulates metastasis. Nat Commun 2016 ; 7 : 13730. [Google Scholar]
  13. Basu H, Pekkurnaz G, Falk J, et al. FHL2 anchors mitochondria to actin and adapts mitochondrial dynamics to glucose supply. J Cell Biol 2021; 220 : e201912077. [CrossRef] [PubMed] [Google Scholar]
  14. López-DoménechG, Covill-CookeC, IvankovicD, et al. Miro proteins coordinate microtubule- and actin-dependent mitochondrial transport and distribution. EMBO J 2018 ; 37 : 321–336. [CrossRef] [PubMed] [Google Scholar]
  15. MacAskillAF, RinholmJE, TwelvetreesAE, et al. Miro1 Is a Calcium Sensor for Glutamate Receptor-Dependent Localization of Mitochondria at Synapses. Neuron 2009 ; 61 : 541–555. [CrossRef] [PubMed] [Google Scholar]
  16. WangX, WinterD, AshrafiG, et al. PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 2011 ; 147 : 893–906. [CrossRef] [PubMed] [Google Scholar]
  17. ModiS, López-DoménechG, HalffEF, et al. Miro clusters regulate ER- mitochondria contact sites and link cristae organization to the mitochondrial transport machinery. Nat Commun 2019 ; 10 : 4399. [Google Scholar]
  18. DesaiSP, BhatiaSN, TonerM, et al. Mitochondrial Localization and the Persistent Migration of Epithelial Cancer cells. Biophys J 2013 ; 104 : 2077–2088. [CrossRef] [PubMed] [Google Scholar]
  19. CunniffB, McKenzieAJ, HeintzNH, et al. AMPK activity regulates trafficking of mitochondria to the leading edge during cell migration and matrix invasion. Mol Biol Cell 2016 ; 27 : 2662–2674. [CrossRef] [PubMed] [Google Scholar]
  20. SchulerM-H, LewandowskaA, CaprioGD, et al. Miro1-mediated mitochondrial positioning shapes intracellular energy gradients required for cell migration. Mol Biol Cell 2017 ; 28 : 2159–2169. [CrossRef] [PubMed] [Google Scholar]
  21. ZhaoJ, ZhangJ, YuM, et al. Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene 2013 ; 32 : 4814–4824. [CrossRef] [PubMed] [Google Scholar]
  22. Rivadeneira DB, Caino MC, Seo JH, et al. Survivin promotes oxidative phosphorylation, subcellular mitochondrial repositioning, and tumor cell invasion. Sci Signal 2015; 8 : ra80. [CrossRef] [PubMed] [Google Scholar]
  23. Zhang P, Yao J, Wang B, et al. Microfluidics-Based Single-Cell Protrusion Analysis for Screening Drugs Targeting Subcellular Mitochondrial Trafficking in Cancer Progression. Anal Chem 2020; 92 : 3095–102. [CrossRef] [PubMed] [Google Scholar]
  24. Furnish M, Caino MC. Altered mitochondrial trafficking as a novel mechanism of cancer metastasis. Cancer Rep Hoboken NJ 2020; 3 : e1157. [CrossRef] [Google Scholar]
  25. MillsKM, BrocardoMG, HendersonBR. APC binds the Miro/Milton motor complex to stimulate transport of mitochondria to the plasma membrane. Mol Biol Cell 2016 ; 27 : 466–482. [CrossRef] [PubMed] [Google Scholar]
  26. AgarwalE, AltmanBJ, Ho SeoJ, et al. Myc Regulation of a Mitochondrial Trafficking Network Mediates Tumor Cell Invasion and Metastasis. Mol Cell Biol 2019 ; 39 : e00109–e00119. [PubMed] [Google Scholar]
  27. Pangou E, Sumara I. The Multifaceted Regulation of Mitochondrial Dynamics During Mitosis. Front Cell Dev Biol 2021; 9 : 767221. [CrossRef] [PubMed] [Google Scholar]
  28. Chung JY-M, Steen JA, Schwarz TL. Phosphorylation-Induced Motor Shedding Is Required at Mitosis for Proper Distribution and Passive Inheritance of Mitochondria. Cell Rep 2016; 16 : 2142–55. [CrossRef] [PubMed] [Google Scholar]
  29. Moore AS, Coscia SM, Simpson CL, et al. Actin cables and comet tails organize mitochondrial networks in mitosis. Nature 2021; 591 : 659–64. [CrossRef] [PubMed] [Google Scholar]
  30. RohnJL, PatelJV, NeumannB, et al. Myo19 ensures symmetric partitioning of mitochondria and coupling of mitochondrial segregation to cell division. Curr Biol 2014 ; 24 : 2598–2605. [CrossRef] [PubMed] [Google Scholar]
  31. Majstrowicz K, Honnert U, Nikolaus P, et al. Coordination of mitochondrial and cellular dynamics by the actin-based motor Myo19. J Cell Sci 2021; 134 : jcs255844. [CrossRef] [PubMed] [Google Scholar]
  32. LawrenceEJ, BoucherE, MandatoCA. Mitochondria-cytoskeleton associations in mammalian cytokinesis. Cell Div 2016 ; 11 : 3. [CrossRef] [PubMed] [Google Scholar]
  33. KanferG, CourthéouxT, PeterkaM, et al. Mitotic redistribution of the mitochondrial network by Miro and Cenp-F. Nat Commun 2015 ; 6 : 8015. [Google Scholar]
  34. KanferG, KornmannB. Dynamics of the mitochondrial network during mitosis. Biochem Soc Trans 2016 ; 44 : 510–516. [CrossRef] [PubMed] [Google Scholar]
  35. KanferG, PeterkaM, ArzhanikVK, et al. CENP-F couples cargo to growing and shortening microtubule ends. Mol Biol Cell 2017 ; 28 : 2400–2409. [CrossRef] [PubMed] [Google Scholar]
  36. LiQ, YaoL, WeiY, et al. Role of RHOT1 on migration and proliferation of pancreatic cancer. Am J Cancer Res 2015 ; 5 : 1460–1470. [PubMed] [Google Scholar]
  37. SunJ, HuangJ, LanJ, et al. Overexpression of CENPF correlates with poor prognosis and tumor bone metastasis in breast cancer. Cancer Cell Int 2019 ; 19 : 264. [CrossRef] [PubMed] [Google Scholar]
  38. Chen H, Wang X, Wu F, et al. Centromere protein F is identified as a novel therapeutic target by genomics profile and contributing to the progression of pancreatic cancer. Genomics 2021; 113 : 1087–95. [CrossRef] [PubMed] [Google Scholar]
  39. Furnish M, Boulton DP, Genther V, et al. MIRO2 Regulates Prostate Cancer Cell Growth via GCN1-Dependent Stress Signaling. Mol Cancer Res 2022; OF1-15. [PubMed] [Google Scholar]
  40. Wang F, Ye B-G, Liu J-Z, et al. miR-487b and TRAK2 that form an axis to regulate the aggressiveness of osteosarcoma, are potential therapeutic targets and prognostic biomarkers. J Biochem Mol Toxicol 2020; 34 : e22511. [PubMed] [Google Scholar]
  41. GongL-B, WenT, LiZ, et al. DYNC1I1 Promotes the Proliferation and Migration of Gastric Cancer by Up-Regulating IL-6 Expression. Front Oncol 2019 ; 9 : 491. [CrossRef] [PubMed] [Google Scholar]
  42. ZhouL, YeM, XueF, et al. Effects of dynein light chain Tctex-type 3 on the biological behavior of ovarian cancer. Cancer Manag Res 2019 ; 11 : 5925–5938. [CrossRef] [Google Scholar]
  43. Dumitru CA, Brouwer E, Stelzer T, et al. Dynein Light Chain Protein Tctex1: A Novel Prognostic Marker and Molecular Mediator in Glioblastoma. Cancers 2021; 13 : 2624. [CrossRef] [PubMed] [Google Scholar]
  44. MoamerA, HachimIY, BinothmanN, et al. A role for kinesin-1 subunits KIF5B/KLC1 in regulating epithelial mesenchymal plasticity in breast tumorigenesis. EBioMedicine 2019 ; 45 : 92–107. [CrossRef] [PubMed] [Google Scholar]
  45. Desai R, East DA, Hardy L, et al. Mitochondria form contact sites with the nucleus to couple prosurvival retrograde response. Sci Adv 2020; 6 : eabc9955. [CrossRef] [PubMed] [Google Scholar]
  46. Al-Mehdi AB, Pastukh VM, Swiger BM, et al. Perinuclear Mitochondrial Clustering Creates an Oxidant-Rich Nuclear Domain Required for Hypoxia- Induced Transcription. Sci Signal 2012; 5 : ra47. [PubMed] [Google Scholar]
  47. ThomasLW, AshcroftM. Exploring the molecular interface between hypoxia- inducible factor signalling and mitochondria. Cell Mol Life Sci 2019 ; 76 : 1759–1777. [CrossRef] [PubMed] [Google Scholar]
  48. Alshaabi H, Shannon N, Gravelle R, et al. Miro1-mediated mitochondrial positioning supports subcellular redox status. Redox Biol 2020; 38 : 101818. [Google Scholar]
  49. MoschoiR, ImbertV, NeboutM, et al. Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy. Blood 2016 ; 128 : 253–264. [CrossRef] [PubMed] [Google Scholar]
  50. AhmadT, MukherjeeS, PattnaikB, et al. Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. EMBO J 2014 ; 33 : 994–1010. [PubMed] [Google Scholar]
  51. YamashitaYM, InabaM, BuszczakM. Specialized intercellular communications via cytonemes and nanotubes. Annu Rev Cell Dev Biol 2018 ; 34 : 59–84. [CrossRef] [PubMed] [Google Scholar]
  52. Zampieri LX, Silva-Almeida C, Rondeau JD, et al. Mitochondrial Transfer in Cancer: A Comprehensive Review. Int J Mol Sci 2021; 22 : 3245. [CrossRef] [PubMed] [Google Scholar]
  53. HekmatshoarY, NakhleJ, GalloniM, et al. The role of metabolism and tunneling nanotube-mediated intercellular mitochondria exchange in cancer drug resistance. Biochem. 2018 ; 475 : 2305–2328. [CrossRef] [PubMed] [Google Scholar]
  54. Antanavicˇiuˉte˙ I, Rysevaite˙ K, Liutkevicˇius V, et al. Long-Distance Communication between Laryngeal Carcinoma Cells. PLoS ONE 2014; 9 : e99196. [CrossRef] [PubMed] [Google Scholar]
  55. PasquierJ, GuerrouahenBS, Al ThawadiH, et al. Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance. J Transl Med 2013 ; 11 : 94. [CrossRef] [PubMed] [Google Scholar]
  56. Genovese I, Carinci M, Modesti L, et al. Mitochondria: Insights into Crucial Features to Overcome Cancer Chemoresistance. Int J Mol Sci 2021; 22 : 4770. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.