Open Access
Numéro
Med Sci (Paris)
Volume 38, Numéro 6-7, Juin–Juillet 2022
Page(s) 585 - 593
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2022085
Publié en ligne 29 juin 2022
  1. WarburgO.. On the origin of cancer cells. Science 1956 ; 123 : 309–314. [CrossRef] [PubMed] [Google Scholar]
  2. HanahanD, WeinbergRA. Hallmarks of Cancer: The Next Generation. Cell 2011 ; 144 : 646–674. [CrossRef] [PubMed] [Google Scholar]
  3. Cordier-BussatM, ThibertC, SujobertP, et al. Même l’effet Warburg est oxydable - Coopération métabolique et développement tumoral. Med Sci (Paris) 2018 ; 34 : 701–708. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  4. Moindjie H, Rodrigues-Ferreira S, Nahmias C. Mitochondrial Metabolism in Carcinogenesis and Cancer Therapy. Cancers (Basel). 2021; 13 : 3311. [CrossRef] [PubMed] [Google Scholar]
  5. Nahacka Z, Zobalova R, Dubisova M, et al. Miro proteins connect mitochondrial function and intercellular transport. Crit Rev Biochem Mol Biol 2021; 56 : 401–25. [CrossRef] [PubMed] [Google Scholar]
  6. van SpronsenM, MikhaylovaM, LipkaJ, et al. TRAK/Milton Motor-Adaptor Proteins Steer Mitochondrial Trafficking to Axons and Dendrites. Neuron 2013 ; 77 : 485–502. [CrossRef] [PubMed] [Google Scholar]
  7. Fenton AR, Jongens TA, Holzbaur ELF. Mitochondrial adaptor TRAK2 activates and functionally links opposing kinesin and dynein motors. Nat Commun 2021; 12 : 4578. [CrossRef] [PubMed] [Google Scholar]
  8. CaiQ, GerwinC, ShengZ-H. Syntabulin-mediated anterograde transport of mitochondria along neuronal processes. J Cell Biol 2005 ; 170 : 959–969. [CrossRef] [PubMed] [Google Scholar]
  9. FujitaT, MaturanaAD, IkutaJ, et al. Axonal guidance protein FEZ1 associates with tubulin and kinesin motor protein to transport mitochondria in neurites of NGF-stimulated PC12 cells. Biochem Biophys Res Commun 2007 ; 361 : 605–610. [CrossRef] [PubMed] [Google Scholar]
  10. ChoK-I, CaiY, YiH, et al. Association of the kinesin-binding domain of RanBP2 to KIF5B and KIF5C determines mitochondria localization and function. Traffic Cph Den 2007 ; 8 : 1722–1735. [CrossRef] [PubMed] [Google Scholar]
  11. HooikaasPJ, MartinM, MühlethalerT, et al. MAP7 family proteins regulate kinesin-1 recruitment and activation. J Cell Biol 2019 ; 218 : 1298–1318. [CrossRef] [PubMed] [Google Scholar]
  12. CainoMC, SeoJH, AguinaldoA, et al. A neuronal network of mitochondrial dynamics regulates metastasis. Nat Commun 2016 ; 7 : 13730. [CrossRef] [PubMed] [Google Scholar]
  13. Basu H, Pekkurnaz G, Falk J, et al. FHL2 anchors mitochondria to actin and adapts mitochondrial dynamics to glucose supply. J Cell Biol 2021; 220 : e201912077. [CrossRef] [PubMed] [Google Scholar]
  14. López-DoménechG, Covill-CookeC, IvankovicD, et al. Miro proteins coordinate microtubule- and actin-dependent mitochondrial transport and distribution. EMBO J 2018 ; 37 : 321–336. [CrossRef] [PubMed] [Google Scholar]
  15. MacAskillAF, RinholmJE, TwelvetreesAE, et al. Miro1 Is a Calcium Sensor for Glutamate Receptor-Dependent Localization of Mitochondria at Synapses. Neuron 2009 ; 61 : 541–555. [CrossRef] [PubMed] [Google Scholar]
  16. WangX, WinterD, AshrafiG, et al. PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 2011 ; 147 : 893–906. [CrossRef] [PubMed] [Google Scholar]
  17. ModiS, López-DoménechG, HalffEF, et al. Miro clusters regulate ER- mitochondria contact sites and link cristae organization to the mitochondrial transport machinery. Nat Commun 2019 ; 10 : 4399. [CrossRef] [PubMed] [Google Scholar]
  18. DesaiSP, BhatiaSN, TonerM, et al. Mitochondrial Localization and the Persistent Migration of Epithelial Cancer cells. Biophys J 2013 ; 104 : 2077–2088. [CrossRef] [PubMed] [Google Scholar]
  19. CunniffB, McKenzieAJ, HeintzNH, et al. AMPK activity regulates trafficking of mitochondria to the leading edge during cell migration and matrix invasion. Mol Biol Cell 2016 ; 27 : 2662–2674. [CrossRef] [PubMed] [Google Scholar]
  20. SchulerM-H, LewandowskaA, CaprioGD, et al. Miro1-mediated mitochondrial positioning shapes intracellular energy gradients required for cell migration. Mol Biol Cell 2017 ; 28 : 2159–2169. [CrossRef] [PubMed] [Google Scholar]
  21. ZhaoJ, ZhangJ, YuM, et al. Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene 2013 ; 32 : 4814–4824. [CrossRef] [PubMed] [Google Scholar]
  22. Rivadeneira DB, Caino MC, Seo JH, et al. Survivin promotes oxidative phosphorylation, subcellular mitochondrial repositioning, and tumor cell invasion. Sci Signal 2015; 8 : ra80. [CrossRef] [PubMed] [Google Scholar]
  23. Zhang P, Yao J, Wang B, et al. Microfluidics-Based Single-Cell Protrusion Analysis for Screening Drugs Targeting Subcellular Mitochondrial Trafficking in Cancer Progression. Anal Chem 2020; 92 : 3095–102. [CrossRef] [PubMed] [Google Scholar]
  24. Furnish M, Caino MC. Altered mitochondrial trafficking as a novel mechanism of cancer metastasis. Cancer Rep Hoboken NJ 2020; 3 : e1157. [CrossRef] [Google Scholar]
  25. MillsKM, BrocardoMG, HendersonBR. APC binds the Miro/Milton motor complex to stimulate transport of mitochondria to the plasma membrane. Mol Biol Cell 2016 ; 27 : 466–482. [CrossRef] [PubMed] [Google Scholar]
  26. AgarwalE, AltmanBJ, Ho SeoJ, et al. Myc Regulation of a Mitochondrial Trafficking Network Mediates Tumor Cell Invasion and Metastasis. Mol Cell Biol 2019 ; 39 : e00109–e00119. [PubMed] [Google Scholar]
  27. Pangou E, Sumara I. The Multifaceted Regulation of Mitochondrial Dynamics During Mitosis. Front Cell Dev Biol 2021; 9 : 767221. [CrossRef] [PubMed] [Google Scholar]
  28. Chung JY-M, Steen JA, Schwarz TL. Phosphorylation-Induced Motor Shedding Is Required at Mitosis for Proper Distribution and Passive Inheritance of Mitochondria. Cell Rep 2016; 16 : 2142–55. [CrossRef] [PubMed] [Google Scholar]
  29. Moore AS, Coscia SM, Simpson CL, et al. Actin cables and comet tails organize mitochondrial networks in mitosis. Nature 2021; 591 : 659–64. [CrossRef] [PubMed] [Google Scholar]
  30. RohnJL, PatelJV, NeumannB, et al. Myo19 ensures symmetric partitioning of mitochondria and coupling of mitochondrial segregation to cell division. Curr Biol 2014 ; 24 : 2598–2605. [CrossRef] [PubMed] [Google Scholar]
  31. Majstrowicz K, Honnert U, Nikolaus P, et al. Coordination of mitochondrial and cellular dynamics by the actin-based motor Myo19. J Cell Sci 2021; 134 : jcs255844. [CrossRef] [PubMed] [Google Scholar]
  32. LawrenceEJ, BoucherE, MandatoCA. Mitochondria-cytoskeleton associations in mammalian cytokinesis. Cell Div 2016 ; 11 : 3. [CrossRef] [PubMed] [Google Scholar]
  33. KanferG, CourthéouxT, PeterkaM, et al. Mitotic redistribution of the mitochondrial network by Miro and Cenp-F. Nat Commun 2015 ; 6 : 8015. [CrossRef] [PubMed] [Google Scholar]
  34. KanferG, KornmannB. Dynamics of the mitochondrial network during mitosis. Biochem Soc Trans 2016 ; 44 : 510–516. [CrossRef] [PubMed] [Google Scholar]
  35. KanferG, PeterkaM, ArzhanikVK, et al. CENP-F couples cargo to growing and shortening microtubule ends. Mol Biol Cell 2017 ; 28 : 2400–2409. [CrossRef] [PubMed] [Google Scholar]
  36. LiQ, YaoL, WeiY, et al. Role of RHOT1 on migration and proliferation of pancreatic cancer. Am J Cancer Res 2015 ; 5 : 1460–1470. [PubMed] [Google Scholar]
  37. SunJ, HuangJ, LanJ, et al. Overexpression of CENPF correlates with poor prognosis and tumor bone metastasis in breast cancer. Cancer Cell Int 2019 ; 19 : 264. [CrossRef] [PubMed] [Google Scholar]
  38. Chen H, Wang X, Wu F, et al. Centromere protein F is identified as a novel therapeutic target by genomics profile and contributing to the progression of pancreatic cancer. Genomics 2021; 113 : 1087–95. [CrossRef] [PubMed] [Google Scholar]
  39. Furnish M, Boulton DP, Genther V, et al. MIRO2 Regulates Prostate Cancer Cell Growth via GCN1-Dependent Stress Signaling. Mol Cancer Res 2022; OF1-15. [PubMed] [Google Scholar]
  40. Wang F, Ye B-G, Liu J-Z, et al. miR-487b and TRAK2 that form an axis to regulate the aggressiveness of osteosarcoma, are potential therapeutic targets and prognostic biomarkers. J Biochem Mol Toxicol 2020; 34 : e22511. [PubMed] [Google Scholar]
  41. GongL-B, WenT, LiZ, et al. DYNC1I1 Promotes the Proliferation and Migration of Gastric Cancer by Up-Regulating IL-6 Expression. Front Oncol 2019 ; 9 : 491. [CrossRef] [PubMed] [Google Scholar]
  42. ZhouL, YeM, XueF, et al. Effects of dynein light chain Tctex-type 3 on the biological behavior of ovarian cancer. Cancer Manag Res 2019 ; 11 : 5925–5938. [CrossRef] [Google Scholar]
  43. Dumitru CA, Brouwer E, Stelzer T, et al. Dynein Light Chain Protein Tctex1: A Novel Prognostic Marker and Molecular Mediator in Glioblastoma. Cancers 2021; 13 : 2624. [CrossRef] [PubMed] [Google Scholar]
  44. MoamerA, HachimIY, BinothmanN, et al. A role for kinesin-1 subunits KIF5B/KLC1 in regulating epithelial mesenchymal plasticity in breast tumorigenesis. EBioMedicine 2019 ; 45 : 92–107. [CrossRef] [PubMed] [Google Scholar]
  45. Desai R, East DA, Hardy L, et al. Mitochondria form contact sites with the nucleus to couple prosurvival retrograde response. Sci Adv 2020; 6 : eabc9955. [CrossRef] [PubMed] [Google Scholar]
  46. Al-Mehdi AB, Pastukh VM, Swiger BM, et al. Perinuclear Mitochondrial Clustering Creates an Oxidant-Rich Nuclear Domain Required for Hypoxia- Induced Transcription. Sci Signal 2012; 5 : ra47. [PubMed] [Google Scholar]
  47. ThomasLW, AshcroftM. Exploring the molecular interface between hypoxia- inducible factor signalling and mitochondria. Cell Mol Life Sci 2019 ; 76 : 1759–1777. [CrossRef] [PubMed] [Google Scholar]
  48. Alshaabi H, Shannon N, Gravelle R, et al. Miro1-mediated mitochondrial positioning supports subcellular redox status. Redox Biol 2020; 38 : 101818. [Google Scholar]
  49. MoschoiR, ImbertV, NeboutM, et al. Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy. Blood 2016 ; 128 : 253–264. [CrossRef] [PubMed] [Google Scholar]
  50. AhmadT, MukherjeeS, PattnaikB, et al. Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. EMBO J 2014 ; 33 : 994–1010. [PubMed] [Google Scholar]
  51. YamashitaYM, InabaM, BuszczakM. Specialized intercellular communications via cytonemes and nanotubes. Annu Rev Cell Dev Biol 2018 ; 34 : 59–84. [CrossRef] [PubMed] [Google Scholar]
  52. Zampieri LX, Silva-Almeida C, Rondeau JD, et al. Mitochondrial Transfer in Cancer: A Comprehensive Review. Int J Mol Sci 2021; 22 : 3245. [CrossRef] [PubMed] [Google Scholar]
  53. HekmatshoarY, NakhleJ, GalloniM, et al. The role of metabolism and tunneling nanotube-mediated intercellular mitochondria exchange in cancer drug resistance. Biochem. 2018 ; 475 : 2305–2328. [CrossRef] [PubMed] [Google Scholar]
  54. Antanavicˇiuˉte˙ I, Rysevaite˙ K, Liutkevicˇius V, et al. Long-Distance Communication between Laryngeal Carcinoma Cells. PLoS ONE 2014; 9 : e99196. [CrossRef] [PubMed] [Google Scholar]
  55. PasquierJ, GuerrouahenBS, Al ThawadiH, et al. Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance. J Transl Med 2013 ; 11 : 94. [CrossRef] [PubMed] [Google Scholar]
  56. Genovese I, Carinci M, Modesti L, et al. Mitochondria: Insights into Crucial Features to Overcome Cancer Chemoresistance. Int J Mol Sci 2021; 22 : 4770. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.