Open Access
Numéro
Med Sci (Paris)
Volume 38, Numéro 6-7, Juin–Juillet 2022
Page(s) 579 - 584
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2022084
Publié en ligne 29 juin 2022
  1. SavaryG, PottierN, MariB, et al. La fonction d’un long ARN non codant décodée dans la fibrose pulmonaire idiopathique. Med Sci (Paris) 2019 ; 35 : 739–742. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. Cruwys S, Hein P, Humphries B, et al. Drug discovery and development in idiopathic pulmonary fibrosis: challenges and opportunities. Drug Discov Today 2020; 25 : 2277–83. [CrossRef] [PubMed] [Google Scholar]
  3. DuchemannB, Annesi-MaesanoI, Jacobe de NauroisC, et al. Prevalence and incidence of interstitial lung diseases in a multi-ethnic county of Greater Paris. Eur Respir J 2017 ; 50 : 1602419. [CrossRef] [PubMed] [Google Scholar]
  4. MartinezFJ, CollardHR, PardoA, et al. Idiopathic pulmonary fibrosis. Nat Rev Dis Primer 2017 ; 3 : 17074. [CrossRef] [Google Scholar]
  5. HutchinsonJ, FogartyA, HubbardR, et al. Global incidence and mortality of idiopathic pulmonary fibrosis: a systematic review. Eur Respir J 2015 ; 46 : 795–806. [CrossRef] [PubMed] [Google Scholar]
  6. HopkinsRB, BurkeN, FellC, et al. Epidemiology and survival of idiopathic pulmonary fibrosis from national data in Canada. Eur Respir J 2016 ; 48 : 187–195. [CrossRef] [PubMed] [Google Scholar]
  7. WynnTA. Cellular and molecular mechanisms of fibrosis. J Pathol 2008 ; 214 : 199–210. [CrossRef] [PubMed] [Google Scholar]
  8. RanzieriS, Illica MagriniE, MozzoniP, et al. Idiopathic pulmonary fibrosis and occupational risk factors. Med Lav 2019 ; 110 : 407–436. [PubMed] [Google Scholar]
  9. Sheng G, Chen P, Wei Y, et al. Viral Infection Increases the Risk of Idiopathic Pulmonary Fibrosis: A Meta-Analysis. Chest 2020; 157 : 1175–87. [CrossRef] [PubMed] [Google Scholar]
  10. KropskiJA, LawsonWE, YoungLR, et al. Genetic studies provide clues on the pathogenesis of idiopathic pulmonary fibrosis. Dis Model Mech 2013 ; 6 : 9–17. [CrossRef] [PubMed] [Google Scholar]
  11. SpagnoloP, GrunewaldJ, du BoisRM. Genetic determinants of pulmonary fibrosis: evolving concepts. Lancet Respir Med 2014 ; 2 : 416–428. [CrossRef] [PubMed] [Google Scholar]
  12. EvansCM, FingerlinTE, SchwarzMI, et al. Idiopathic Pulmonary Fibrosis: A Genetic Disease That Involves Mucociliary Dysfunction of the Peripheral Airways. Physiol Rev 2016 ; 96 : 1567–1591. [CrossRef] [PubMed] [Google Scholar]
  13. DemouveauxB, GouyerV, MagnienM, et al. La structure des mucines conditionne les propriétés viscoélastiques des gels de mucus. Med Sci (Paris) 2018 ; 34 : 806–812. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  14. PortalC, GouyerV, GottrandF, et al. Ocular mucins in dry eye disease. Exp Eye Res 2019 ; 186 : 107724. [CrossRef] [PubMed] [Google Scholar]
  15. DesseynJ-L, PortalC, GottrandF, et al. Différenciation des cellules à mucus et régulation de la mucine gélifiante Muc5b : un nouvel outil pour des études ex vivo et précliniques in vivo. Med Sci (Paris) 2017 ; 33 : 478–480. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  16. RoyMG, Livraghi-ButricoA, FletcherAA, et al. Muc5b is required for airway defence. Nature 2014 ; 505 : 412–416. [CrossRef] [PubMed] [Google Scholar]
  17. Cottin V, Bonniaud P, Cadranel J, et al. [French practical guidelines for the diagnosis and management of IPF - 2021 update, short version]. Rev Mal Respir 2022; S0761–8425(22)00026–2. [Google Scholar]
  18. Raghu G, Rochwerg B, Zhang Y, et al. An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline: Treatment of Idiopathic Pulmonary Fibrosis. An Update of the Clinical Practice Guideline. Am J Respir Crit Care Med 2011 ; 2015 : 192.e3–19. [Google Scholar]
  19. SomogyiV, ChaudhuriN, TorrisiSE, et al. The therapy of idiopathic pulmonary fibrosis: what is next?. Eur Respir Rev 2019 ; 28 : 190021. [CrossRef] [PubMed] [Google Scholar]
  20. KimSY, DiggansJ, PankratzD, et al. Classification of usual interstitial pneumonia in patients with interstitial lung disease: assessment of a machine learning approach using high-dimensional transcriptional data. Lancet Respir Med 2015 ; 3 : 473–482. [CrossRef] [PubMed] [Google Scholar]
  21. CottinV, CrestaniB, ValeyreD, et al. Diagnosis and management of idiopathic pulmonary fibrosis: French practical guidelines. Eur Respir Rev 2014 ; 23 : 193–214. [CrossRef] [PubMed] [Google Scholar]
  22. LedererDJ, MartinezFJ. Idiopathic Pulmonary Fibrosis. N Engl J Med 2018 ; 378 : 1811–1823. [CrossRef] [PubMed] [Google Scholar]
  23. KorfeiM, StelmaszekD, MacKenzieB, et al. Comparison of the antifibrotic effects of the pan-histone deacetylase-inhibitor panobinostat versus the IPF-drug pirfenidone in fibroblasts from patients with idiopathic pulmonary fibrosis. PLoS One 2018 ; 13 : e0207915. [CrossRef] [PubMed] [Google Scholar]
  24. FlahertyKR, WellsAU, CottinV, et al. Nintedanib in Progressive Fibrosing Interstitial Lung Diseases. N Engl J Med 2019 ; 381 : 1718–1727. [CrossRef] [PubMed] [Google Scholar]
  25. Maher TM, Corte TJ, Fischer A, et al. Pirfenidone in patients with unclassifiable progressive fibrosing interstitial lung disease: a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Respir Med 2020; 8 : 147–57. [CrossRef] [PubMed] [Google Scholar]
  26. Behr J, Prasse A, Kreuter M, et al. Pirfenidone in patients with progressive fibrotic interstitial lung diseases other than idiopathic pulmonary fibrosis (RELIEF): a double-blind, randomised, placebo-controlled, phase 2b trial. Lancet Respir Med 2021; 9 : 476–86. [CrossRef] [PubMed] [Google Scholar]
  27. BlackwellTS, TagerAM, BorokZ, et al. Future directions in idiopathic pulmonary fibrosis research. An NHLBI workshop report. Am J Respir Crit Care Med 2014 ; 189 : 214–222. [CrossRef] [PubMed] [Google Scholar]
  28. SundarakrishnanA, ChenY, BlackLD, et al. Engineered cell and tissue models of pulmonary fibrosis. Adv Drug Deliv Rev 2018 ; 129 : 78–94. [CrossRef] [PubMed] [Google Scholar]
  29. SaitoA, HorieM, MickeP, et al. The Role of TGF-β Signaling in Lung Cancer Associated with Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2018 ; 19 : E3611. [CrossRef] [Google Scholar]
  30. Glisinski KM, Schlobohm AJ, Paramore SV, et al. Interleukin-13 disrupts type 2 pneumocyte stem cell activity. JCI Insight 2020; 5 : 131232. [CrossRef] [PubMed] [Google Scholar]
  31. SongC, HeL, ZhangJ, et al. Fluorofenidone attenuates pulmonary inflammation and fibrosis via inhibiting the activation of NALP3 inflammasome and IL-1β/IL-1R1/MyD88/NF-κB pathway. J Cell Mol Med 2016 ; 20 : 2064–2077. [CrossRef] [PubMed] [Google Scholar]
  32. Epstein Shochet G, Brook E, Israeli-Shani L, et al. Fibroblast paracrine TNF-α signaling elevates integrin A5 expression in idiopathic pulmonary fibrosis (IPF). Respir Res 2017; 18 : 122. [CrossRef] [PubMed] [Google Scholar]
  33. AntoniadesHN, BravoMA, AvilaRE, et al. Platelet-derived growth factor in idiopathic pulmonary fibrosis. J Clin Invest 1990 ; 86 : 1055–1064. [CrossRef] [PubMed] [Google Scholar]
  34. TagerAM. Autotaxin emerges as a therapeutic target for idiopathic pulmonary fibrosis: limiting fibrosis by limiting lysophosphatidic acid synthesis. Am J Respir Cell Mol Biol 2012 ; 47 : 563–565. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.