Free Access
Med Sci (Paris)
Volume 37, Novembre 2021
Les Cahiers de Myologie
Page(s) 40 - 43
Section Cas clinique
Published online 08 December 2021
  1. Coppens S, Barnard AM, Puusepp S, et al. A form of muscular dystrophy associated with pathogenic variants in JAG2. Am J Hum Genet 2021; 108 : 840–56. [CrossRef] [PubMed] [Google Scholar]
  2. Luo B, Aster JC, Hasserjian RP, et al. Isolation and functional analysis of a cDNA for human Jagged2, a gene encoding a ligand for the Notch1 receptor. Mol Cell Biol 1997 ; 17 : 6057–6067. [CrossRef] [PubMed] [Google Scholar]
  3. Deng Y, Madan A, Banta AB, et al. Characterization, chromosomal localization, and the complete 30-kb DNA sequence of the human Jagged2 (JAG2) gene. Genomics 2000 ; 63 : 133–138. [CrossRef] [PubMed] [Google Scholar]
  4. Suckling RJ, Korona B, Whiteman P, et al. Structural and functional dissection of the interplay between lipid and Notch binding by human Notch ligands. EMBO J 2017 ; 36 : 2204–2215. [CrossRef] [PubMed] [Google Scholar]
  5. Luo D, Renault VM, Rando TA. The regulation of Notch signaling in muscle stem cell activation and postnatal myogenesis. Semin Cell Dev Biol 2005 ; 16 : 612–622. [CrossRef] [PubMed] [Google Scholar]
  6. Mourikis P, Tajbakhsh S. Distinct contextual roles for Notch signalling in skeletal muscle stem cells. BMC Dev Biol 2014; 14. doi:10.1186/1471-213X-14-2. [CrossRef] [PubMed] [Google Scholar]
  7. Mašek J, Andersson ER. The developmental biology of genetic notch disorders. Dev 2017 ; 144 : 1743–1763. [CrossRef] [PubMed] [Google Scholar]
  8. Li L, Krantz ID, Deng Y, Genin A, et al. Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for notch1. Nat Genet 1997 ; 16 : 243–251. [CrossRef] [PubMed] [Google Scholar]
  9. Grochowski CM, Loomes KM, Spinner NB. Jagged1 (JAG1): structure, expression, and disease associations. Gene 2016 ; 576 : 381–384. [CrossRef] [PubMed] [Google Scholar]
  10. Bauer RC, Laney AO, Smith R, et al. Jagged1 (JAG1) mutations in patients with tetralogy of Fallot or pulmonic stenosis. Hum Mutat 2010 ; 31 : 594–601. [CrossRef] [PubMed] [Google Scholar]
  11. Fischer-Zirnsak B, Segebrecht L, Schubach M, et al. Haploinsufficiency of the Notch ligand DLL1 Causes variable neurodevelopmental disorders. Am J Hum Genet 2019 ; 105 : 631–639. [CrossRef] [PubMed] [Google Scholar]
  12. Bulman MP, Kusumi K, Frayling TM, et al. Mutations in the human Delta homologue, DLL3, cause axial skeletal defects in spondylocostal dysostosis. Nat Genet 2000 ; 24 : 438–441. [CrossRef] [PubMed] [Google Scholar]
  13. Sullivan JM, Motley WW, Johnson JO, et al. Dominant mutations of the Notch ligand Jagged1 cause peripheral neuropathy. J Clin Invest 2020; 130 : 1506–12. [CrossRef] [PubMed] [Google Scholar]
  14. Chabriat H, Joutel A, Dichgans M, et al. Lancet Neurol 2009 ; 8 : 643–653. [CrossRef] [PubMed] [Google Scholar]
  15. Mercuri E, Lampe A, Allsop J, et al. Muscle MRI in Ullrich congenital muscular dystrophy and Bethlem myopathy. Neuromuscul Disord 2005 ; 15 : 303–310. [CrossRef] [PubMed] [Google Scholar]
  16. Mercuri E, Cini C, Pichiecchio A, et al. Muscle magnetic resonance imaging in patients with congenital muscular dystrophy and Ullrich phenotype. Neuromuscul Disord 2003 ; 13 : 554–558. [CrossRef] [PubMed] [Google Scholar]
  17. Servián-Morilla E, Takeuchi H, Lee T V, et al. A POGLUT 1 mutation causes a muscular dystrophy with reduced Notch signaling and satellite cell loss. EMBO Mol Med 2016 ; 8 : 1289–1309. 10.15252/emmm.201505815 [CrossRef] [PubMed] [Google Scholar]
  18. Bönnemann CG. The collagen VI-related myopathies: muscle meets its matrix. Nat Rev Neurol 2011 ; 7 : 379–390. [CrossRef] [PubMed] [Google Scholar]
  19. Briñas L, Richard P, Quijano-Roy S, et al. Early onset collagen VI myopathies: genetic and clinical correlations. Ann Neurol 2010 ; 68 : 511–520. [CrossRef] [PubMed] [Google Scholar]
  20. Logan CV, Lucke B, Pottinger C, et al. Mutations in MEGF10, a regulator of satellite cell myogenesis, cause early onset myopathy, areflexia, respiratory distress and dysphagia (EMARDD). Nat Genet 2011 ; 43 : 1189–1193. [CrossRef] [PubMed] [Google Scholar]
  21. Villar-Quiles RN, von der Hagen M, Métay C, et al. The clinical, histologic, and genotypic spectrum of SEPN1-related myopathy: a case series. Neurology 2020; 95 : e1512–27. [CrossRef] [PubMed] [Google Scholar]
  22. Sarkozy A, Foley AR, Zambon AA, et al. LAMA2-related dystrophies: clinical phenotypes, disease biomarkers, and clinical trial readiness. Front Mol Neurosci 2020; 13. doi:10.3389/fnmol.2020.00123. [PubMed] [Google Scholar]
  23. Muntoni F, Torelli S, Brockington M. Muscular dystrophies due to glycosylation defects. Neurotherapeutics 2008 ; 5 : 627–632. [CrossRef] [PubMed] [Google Scholar]
  24. Feichtinger RG, Mucha BE, Hengel H, et al. Biallelic variants in the transcription factor PAX7 are a new genetic cause of myopathy. Genet Med 2019 ; 21 : 2521–2531. [CrossRef] [PubMed] [Google Scholar]
  25. Saha M, Mitsuhashi S, Jones MD, et al. Consequences of MEGF10 deficiency on myoblast function and Notch1 interactions. Hum Mol Genet 2017 ; 26 : 2984–3000. [CrossRef] [PubMed] [Google Scholar]
  26. Castets P, Bertrand AT, Beuvin M, et al. Satellite cell loss and impaired muscle regeneration in selenoprotein N deficiency. Hum Mol Genet 2011 ; 20 : 694–704. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.