Open Access
Issue
Med Sci (Paris)
Volume 37, Number 6-7, Juin-Juillet 2021
Page(s) 625 - 631
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2021091
Published online 28 June 2021
  1. Zamecnik PC, Stephenson ML. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci USA 1978 ; 75 : 280–284. [Google Scholar]
  2. Wickstrom E. Oligodeoxynucleotide stability in subcellular extracts and culture media. J Biochem Biophys Methods 1986 ; 13 : 97–102. [Google Scholar]
  3. Gaus HJ, Gupta R, Chappell AE, et al. Characterization of the interactions of chemically-modified therapeutic nucleic acids with plasma proteins using a fluorescence polarization assay. Nucleic Acids Res 2019 ; 47 : 1110–1122. [Google Scholar]
  4. Crooke ST, Wang S, Vickers TA, et al. Cellular uptake and trafficking of antisense oligonucleotides. Nat Biotechnol 2017 ; 35 : 230–237. [Google Scholar]
  5. Crooke ST, Baker BF, Witztum JL, et al. The effects of 2’-O-methoxyethyl containing antisense oligonucleotides on platelets in human clinical trials. Nucleic Acid Ther 2017 ; 27 : 121–129. [Google Scholar]
  6. Goyenvalle A, Leumann C, Garcia L. Therapeutic Potential of Tricyclo-DNA antisense oligonucleotides. J Neuromuscul Dis 2016 ; 3 : 157–167. [Google Scholar]
  7. Summerton J, Weller D. Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev 1997 ; 7 : 187–195. [Google Scholar]
  8. Hagedorn PH, Persson R, Funder ED, et al. Locked nucleic acid: modality, diversity, and drug discovery. Drug Discov Today 2018 ; 23 : 101–114. [Google Scholar]
  9. Seth PP, Siwkowski A, Allerson CR, et al. Design, synthesis and evaluation of constrained methoxyethyl (cMOE) and constrained ethyl (cEt) nucleoside analogs. Nucleic Acids Symp Ser (Oxf) 2008; 553–4. [Google Scholar]
  10. Goemans NM, Tulinius M, van den Akker JT, et al. Systemic administration of PRO051 in Duchenne’s muscular dystrophy. N Engl J Med 2011 ; 364 : 1513–1522. [Google Scholar]
  11. Goemans N, Mercuri E, Belousova E, et al. A randomized placebo-controlled phase 3 trial of an antisense oligonucleotide, drisapersen, in Duchenne muscular dystrophy. Neuromuscul Disord 2018 ; 28 : 4–15. [Google Scholar]
  12. Aartsma-Rus A, Goemans N. A sequel to the Eteplirsen saga: eteplirsen is approved in the United States but was not approved in Europe. Nucleic Acid Ther 2019 ; 29 : 13–15. [Google Scholar]
  13. Heo YA. Golodirsen: first approval. Drugs 2020; 80 : 329–33. [Google Scholar]
  14. Komaki H, Takeshima Y, Matsumura T, et al. Viltolarsen in Japanese Duchenne muscular dystrophy patients: a phase 1/2 study. Ann Clin Transl Neurol 2020; 7 : 2393–408. [Google Scholar]
  15. Novak JS, Hogarth MW, Boehler JF, et al. Myoblasts and macrophages are required for therapeutic morpholino antisense oligonucleotide delivery to dystrophic muscle. Nat Commun 2017 ; 8 : 941. [Google Scholar]
  16. Roberts TC, Langer R, Wood MJA. Advances in oligonucleotide drug delivery. Nat Rev Drug Discov 2020; 19 : 673–94. [Google Scholar]
  17. Goyenvalle A, Griffith G, Babbs A, et al. Functional correction in mouse models of muscular dystrophy using exon-skipping tricyclo-DNA oligomers. Nat Med 2015 ; 21 : 270–275. [Google Scholar]
  18. Robin V, Griffith G, Carter J-PL, et al. Efficient SMN rescue following subcutaneous tricyclo-DNA antisense oligonucleotide treatment. Mol Ther Nucleic Acids 2017 ; 7 : 81–89. [Google Scholar]
  19. Goyenvalle A, Griffith G, Avril A, et al. Un nouvel outil pour le traitement de la myopathie de Duchenne : les tricyclo-ADN. Med Sci (Paris) 2015 ; 31 : 253–256. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  20. Sugo T, Terada M, Oikawa T, et al. Development of antibody-siRNA conjugate targeted to cardiac and skeletal muscles. J Control Release 2016 ; 237 : 1–13. [Google Scholar]
  21. Betts C, Saleh AF, Arzumanov AA, et al. Pip6-PMO, a new generation of peptide-oligonucleotide conjugates with improved cardiac exon skipping activity for DMD treatment. Mol Ther Nucleic Acids 2012 ; 1 : e38. [Google Scholar]
  22. Goyenvalle A, Babbs A, Wright J, et al. Rescue of severely affected dystrophin/utrophin-deficient mice through scAAV-U7snRNA-mediated exon skipping. Hum Mol Genet 2012 ; 21 : 2559–2571. [Google Scholar]
  23. Vulin A, Barthélémy I, Goyenvalle A, et al. Muscle Function recovery in golden retriever muscular dystrophy after AAV1-U7 exon skipping. Mol Ther 2012 ; 20 : 2120–2133. [Google Scholar]
  24. Le Guiner C, Montus M, Servais L, et al. Forelimb treatment in a large cohort of dystrophic dogs supports delivery of a recombinant AAV for exon skipping in Duchenne patients. Mol Ther 2014 ; 22 : 1923–1935. [Google Scholar]
  25. Grimm C, Stefanovic B, Schümperli D. The low abundance of U7 snRNA is partly determined by its Sm binding site. EMBO J 1993 ; 12 : 1229–1238. [Google Scholar]
  26. Wein N, Vulin A, Falzarano MS, et al. Translation from a DMD exon 5 IRES results in a functional dystrophin isoform that attenuates dystrophinopathy in humans and mice. Nat Med 2014 ; 20 : 992–1000. [Google Scholar]
  27. Waldrop M. Expression of apparent full-length dystrophin in skeletal muscle in a first-in-human gene therapy trial using the scAAV9.U7-ACCA vector. Neuromuscul Disord 2020; S166–7. [Google Scholar]
  28. Singh NK, Singh NN, Androphy EJ, et al. Splicing of a critical exon of human survival motor neuron is regulated by a unique silencer element located in the last intron. Mol Cell Biol 2006 ; 26 : 1333–1346. [Google Scholar]
  29. Hua Y, Sahashi K, Hung G, et al. Antisense correction of SMN2 splicing in the CNS rescues necrosis in a type III SMA mouse model. Genes Dev 2010 ; 24 : 1634–1644. [Google Scholar]
  30. Hua Y, Sahashi K, Rigo F, et al. Peripheral SMN restoration is essential for long-term rescue of a severe SMA mouse model. Nature 2011 ; 478 : 123–126. [Google Scholar]
  31. Gargaun E. Les oligonucléotides anti-sens dans la SMA : retour d’expérience et données de la littérature. Med Sci (Paris) 2019; 35 (hors série n° 2) : 11–4. [EDP Sciences] [Google Scholar]
  32. De Vivo DC, Bertini E, Swoboda KJ, et al. Nusinersen initiated in infants during the presymptomatic stage of spinal muscular atrophy: Interim efficacy and safety results from the Phase 2 NURTURE study. Neuromuscul Disord 2019 ; 29 : 842–856. [Google Scholar]
  33. Hammond SM, Hazell G, Shabanpoor F, et al. Systemic peptide-mediated oligonucleotide therapy improves long-term survival in spinal muscular atrophy. Proc Natl Acad Sci USA 2016 ; 113 : 10962–10967. [Google Scholar]
  34. Campagne S, Boigner S, Rüdisser S, et al. Structural basis of a small molecule targeting RNA for a specific splicing correction. Nat Chem Biol 2019 ; 15 : 1191–1198. [Google Scholar]
  35. Poirier A, Weetall M, Heinig K, et al. Risdiplam distributes and increases SMN protein in both the central nervous system and peripheral organs. Pharmacol Res Perspect 2018 ; 6 : e00447. [Google Scholar]
  36. Cheung AK, Hurley B, Kerrigan R, et al. Discovery of small molecule splicing modulators of survival motor neuron-2 (SMN2) for the treatment of spinal muscular atrophy (SMA). J Med Chem 2018 ; 61 : 11021–11036. [Google Scholar]
  37. Godfrey C, Desviat LR, Smedsrød B, et al. Delivery is key: lessons learnt from developing splice-switching antisense therapies. EMBO Mol Med 2017 ; 9 : 545–557. [Google Scholar]
  38. Bizot F, Vulin A, Goyenvalle A. Current status of antisense oligonucleotide-based therapy in neuromuscular disorders. Drugs 2020; 80 : 1397–415. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.