Modèles alternatifs
Open Access
Issue
Med Sci (Paris)
Volume 37, Number 6-7, Juin-Juillet 2021
Modèles alternatifs
Page(s) 632 - 638
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2021087
Published online 28 June 2021
  1. Hodges ME, Scheumann N, Wickstead B, et al. Reconstructing the evolutionary history of the centriole from protein components. J Cell Sci 2010 ; 123 : 1407–1413. [CrossRef] [PubMed] [Google Scholar]
  2. Eggenschwiler JT, Anderson KV. Cilia and developmental signaling. Annu Rev Cell Dev Biol 2007 ; 23 : 345–373. [CrossRef] [PubMed] [Google Scholar]
  3. Mitchison HM, Valente EM. Motile and non-motile cilia in human pathology: from function to phenotypes. J Pathol 2017 ; 241 : 294–309. [CrossRef] [PubMed] [Google Scholar]
  4. Reiter JF, Blacque OE, Leroux MR. The base of the cilium: roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization. EMBO Rep 2012 ; 13 : 608–618. [CrossRef] [PubMed] [Google Scholar]
  5. Reiter JF, Leroux MR. Genes and molecular pathways underpinning ciliopathies. Nat Rev Mol Cell Biol 2017 ; 18 : 533–547. [CrossRef] [PubMed] [Google Scholar]
  6. Tassin A-M, Lemullois M, Aubusson-Fleury A. Paramecium tetraurelia basal body structure. Cilia 2015 ; 5 : 6. [Google Scholar]
  7. Gogendeau D, Lemullois M, Le Borgne P, et al. MKS-NPHP module proteins control ciliary shedding at the transition zone. PLoS Biol 2020; 18 : e3000640. [CrossRef] [PubMed] [Google Scholar]
  8. Ponsard C, Skowron-Zwarg M, Seltzer V, et al. Identification of ICIS-1, a new protein involved in cilia stability. Front Biosci J Virtual Libr 2007 ; 12 : 1661–1669. [CrossRef] [Google Scholar]
  9. Beisson J, Bétermier M, Bré M-H, et al. Silencing specific Paramecium tetraurelia genes by feeding double-stranded RNA. Cold Spring Harb Protoc 2010; 2010 : pdb.prot5363. [PubMed] [Google Scholar]
  10. Beisson J, Bétermier M, Bré MH, et al. DNA microinjection into the macronucleus of paramecium. Cold Spring Harb Protoc 2010; 2010 : pdb.prot5364. [PubMed] [Google Scholar]
  11. Arnaiz O, Cain S, Cohen J, et al. ParameciumDB: a community resource that integrates the Paramecium tetraurelia genome sequence with genetic data. Nucleic Acids Res 2007 ; 35 : D439–D434. [CrossRef] [PubMed] [Google Scholar]
  12. Arnaiz O, Cohen J, Tassin A-M, et al. Remodeling Cildb, a popular database for cilia and links for ciliopathies. Cilia 2014 ; 3 : 9. [CrossRef] [PubMed] [Google Scholar]
  13. Iftode F, Fleury-Aubusson A. Structural inheritance in Paramecium: ultrastructural evidence for basal body and associated rootlets polarity transmission through binary fission. Biol Cell 2003 ; 95 : 39–51. [CrossRef] [PubMed] [Google Scholar]
  14. Bruel AL, Franco B, Duffourd Y, et al. Fifteen years of research on oral-facial-digital syndromes: from 1 to 16 causal genes. J Med Genet 2017 ; 54 : 371–380. [PubMed] [Google Scholar]
  15. Failler M, Gee HY, Krug P, et al. Mutations of CEP83 cause infantile nephronophthisis and intellectual disability. Am J Hum Genet 2014 ; 94 : 905–914. [CrossRef] [PubMed] [Google Scholar]
  16. Thauvin-Robinet C, Thomas S, Sinico M, et al. OFD1 mutations in males: phenotypic spectrum and ciliary basal body docking impairment. Clin Genet 2013 ; 84 : 86–90. [PubMed] [Google Scholar]
  17. Chevrier V, Bruel A-L, Van Dam TJP, et al. OFIP/KIAA0753 forms a complex with OFD1 and FOR20 at pericentriolar satellites and centrosomes and is mutated in one individual with oral-facial-digital syndrome. Hum Mol Genet 2016 ; 25 : 497–513. [PubMed] [Google Scholar]
  18. Bengueddach H, Lemullois M, Aubusson-Fleury A, et al. Basal body positioning and anchoring in the multiciliated cell Paramecium tetraurelia: roles of OFD1 and VFL3. Cilia 2017 ; 6 : 6. [CrossRef] [PubMed] [Google Scholar]
  19. Ruiz F, Garreau de Loubresse N, Klotz C, et al. Centrin deficiency in Paramecium affects the geometry of basal-body duplication. Curr Biol CB 2005 ; 15 : 2097–2106. [Google Scholar]
  20. Aubusson-Fleury A, Lemullois M, Garreau de Loubresse N, et al. The conserved centrosomal protein FOR20 is required for assembly of the transition zone and basal body docking at the cell surface. J Cell Sci 2012 ; 125 : 4395–4404. [PubMed] [Google Scholar]
  21. Jerka-Dziadosz M, Koll F, Włoga D, et al. A Centrin3-dependent, transient, appendage of the mother basal body guides the positioning of the daughter basal body in paramecium. Protist 2013 ; 164 : 352–368. [CrossRef] [PubMed] [Google Scholar]
  22. Basquin C, Ershov D, Gaudin N, et al. Emergence of a bilaterally symmetric pattern from chiral components in the planarian epidermis. Dev Cell 2019 ; 51 : 516–25.e5. [CrossRef] [PubMed] [Google Scholar]
  23. Gonçalves J, Pelletier L. The ciliary transition zone: finding the pieces and assembling the gate. Mol Cells 2017 ; 40 : 243–253. [CrossRef] [PubMed] [Google Scholar]
  24. Watanabe T. A scanning electron-microscopic study of the local degeneration of cilia during sexual reproduction in paramecium. J Cell Sci 1978 ; 32 : 55–66. [CrossRef] [PubMed] [Google Scholar]
  25. Brenner RM. Renewal of oviduct cilia during the menstrual cycle of the rhesus monkey. Fertil Steril 1969 ; 20 : 599–611. [CrossRef] [PubMed] [Google Scholar]
  26. Mirvis M, Siemers KA, Nelson WJ, et al. Primary cilium loss in mammalian cells occurs predominantly by whole-cilium shedding. PLoS Biol 2019 ; 17 : e3000381. [CrossRef] [PubMed] [Google Scholar]
  27. Lucas JS, Burgess A, Mitchison HM, et al. Diagnosis and management of primary ciliary dyskinesia. Arch Dis Child 2014 ; 99 : 850–856. [CrossRef] [PubMed] [Google Scholar]
  28. Fassad MR, Shoemark A, Le Borgne P, et al. C11orf70 Mutations disrupting the intraflagellar transport-dependent assembly of multiple axonemal dyneins cause primary ciliary dyskinesia. Am J Hum Genet 2018 ; 102 : 956–972. [CrossRef] [PubMed] [Google Scholar]
  29. Fassad MR, Shoemark A, Legendre M, et al. Mutations in outer dynein arm heavy chain dnah9 cause motile cilia defects and situs inversus. Am J Hum Genet 2018 ; 103 : 984–994. [CrossRef] [PubMed] [Google Scholar]
  30. Thomas L, Bouhouche K, Whitfield M, et al. TTC12 Loss-of-Function mutations cause primary ciliary dyskinesia and unveil distinct dynein assembly mechanisms in motile cilia versus flagella. Am J Hum Genet 2020; 106 : 153–69. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.