Open Access
Numéro |
Med Sci (Paris)
Volume 37, Numéro 6-7, Juin-Juillet 2021
|
|
---|---|---|
Page(s) | 625 - 631 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2021091 | |
Publié en ligne | 28 juin 2021 |
- Zamecnik PC, Stephenson ML. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci USA 1978 ; 75 : 280–284. [Google Scholar]
- Wickstrom E. Oligodeoxynucleotide stability in subcellular extracts and culture media. J Biochem Biophys Methods 1986 ; 13 : 97–102. [CrossRef] [PubMed] [Google Scholar]
- Gaus HJ, Gupta R, Chappell AE, et al. Characterization of the interactions of chemically-modified therapeutic nucleic acids with plasma proteins using a fluorescence polarization assay. Nucleic Acids Res 2019 ; 47 : 1110–1122. [CrossRef] [PubMed] [Google Scholar]
- Crooke ST, Wang S, Vickers TA, et al. Cellular uptake and trafficking of antisense oligonucleotides. Nat Biotechnol 2017 ; 35 : 230–237. [CrossRef] [PubMed] [Google Scholar]
- Crooke ST, Baker BF, Witztum JL, et al. The effects of 2’-O-methoxyethyl containing antisense oligonucleotides on platelets in human clinical trials. Nucleic Acid Ther 2017 ; 27 : 121–129. [CrossRef] [PubMed] [Google Scholar]
- Goyenvalle A, Leumann C, Garcia L. Therapeutic Potential of Tricyclo-DNA antisense oligonucleotides. J Neuromuscul Dis 2016 ; 3 : 157–167. [CrossRef] [PubMed] [Google Scholar]
- Summerton J, Weller D. Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev 1997 ; 7 : 187–195. [CrossRef] [PubMed] [Google Scholar]
- Hagedorn PH, Persson R, Funder ED, et al. Locked nucleic acid: modality, diversity, and drug discovery. Drug Discov Today 2018 ; 23 : 101–114. [CrossRef] [PubMed] [Google Scholar]
- Seth PP, Siwkowski A, Allerson CR, et al. Design, synthesis and evaluation of constrained methoxyethyl (cMOE) and constrained ethyl (cEt) nucleoside analogs. Nucleic Acids Symp Ser (Oxf) 2008; 553–4. [CrossRef] [PubMed] [Google Scholar]
- Goemans NM, Tulinius M, van den Akker JT, et al. Systemic administration of PRO051 in Duchenne’s muscular dystrophy. N Engl J Med 2011 ; 364 : 1513–1522. [CrossRef] [PubMed] [Google Scholar]
- Goemans N, Mercuri E, Belousova E, et al. A randomized placebo-controlled phase 3 trial of an antisense oligonucleotide, drisapersen, in Duchenne muscular dystrophy. Neuromuscul Disord 2018 ; 28 : 4–15. [CrossRef] [PubMed] [Google Scholar]
- Aartsma-Rus A, Goemans N. A sequel to the Eteplirsen saga: eteplirsen is approved in the United States but was not approved in Europe. Nucleic Acid Ther 2019 ; 29 : 13–15. [CrossRef] [PubMed] [Google Scholar]
- Heo YA. Golodirsen: first approval. Drugs 2020; 80 : 329–33. [CrossRef] [PubMed] [Google Scholar]
- Komaki H, Takeshima Y, Matsumura T, et al. Viltolarsen in Japanese Duchenne muscular dystrophy patients: a phase 1/2 study. Ann Clin Transl Neurol 2020; 7 : 2393–408. [CrossRef] [PubMed] [Google Scholar]
- Novak JS, Hogarth MW, Boehler JF, et al. Myoblasts and macrophages are required for therapeutic morpholino antisense oligonucleotide delivery to dystrophic muscle. Nat Commun 2017 ; 8 : 941. [CrossRef] [PubMed] [Google Scholar]
- Roberts TC, Langer R, Wood MJA. Advances in oligonucleotide drug delivery. Nat Rev Drug Discov 2020; 19 : 673–94. [CrossRef] [PubMed] [Google Scholar]
- Goyenvalle A, Griffith G, Babbs A, et al. Functional correction in mouse models of muscular dystrophy using exon-skipping tricyclo-DNA oligomers. Nat Med 2015 ; 21 : 270–275. [CrossRef] [PubMed] [Google Scholar]
- Robin V, Griffith G, Carter J-PL, et al. Efficient SMN rescue following subcutaneous tricyclo-DNA antisense oligonucleotide treatment. Mol Ther Nucleic Acids 2017 ; 7 : 81–89. [CrossRef] [PubMed] [Google Scholar]
- Goyenvalle A, Griffith G, Avril A, et al. Un nouvel outil pour le traitement de la myopathie de Duchenne : les tricyclo-ADN. Med Sci (Paris) 2015 ; 31 : 253–256. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Sugo T, Terada M, Oikawa T, et al. Development of antibody-siRNA conjugate targeted to cardiac and skeletal muscles. J Control Release 2016 ; 237 : 1–13. [CrossRef] [PubMed] [Google Scholar]
- Betts C, Saleh AF, Arzumanov AA, et al. Pip6-PMO, a new generation of peptide-oligonucleotide conjugates with improved cardiac exon skipping activity for DMD treatment. Mol Ther Nucleic Acids 2012 ; 1 : e38. [CrossRef] [PubMed] [Google Scholar]
- Goyenvalle A, Babbs A, Wright J, et al. Rescue of severely affected dystrophin/utrophin-deficient mice through scAAV-U7snRNA-mediated exon skipping. Hum Mol Genet 2012 ; 21 : 2559–2571. [CrossRef] [PubMed] [Google Scholar]
- Vulin A, Barthélémy I, Goyenvalle A, et al. Muscle Function recovery in golden retriever muscular dystrophy after AAV1-U7 exon skipping. Mol Ther 2012 ; 20 : 2120–2133. [CrossRef] [PubMed] [Google Scholar]
- Le Guiner C, Montus M, Servais L, et al. Forelimb treatment in a large cohort of dystrophic dogs supports delivery of a recombinant AAV for exon skipping in Duchenne patients. Mol Ther 2014 ; 22 : 1923–1935. [CrossRef] [PubMed] [Google Scholar]
- Grimm C, Stefanovic B, Schümperli D. The low abundance of U7 snRNA is partly determined by its Sm binding site. EMBO J 1993 ; 12 : 1229–1238. [CrossRef] [PubMed] [Google Scholar]
- Wein N, Vulin A, Falzarano MS, et al. Translation from a DMD exon 5 IRES results in a functional dystrophin isoform that attenuates dystrophinopathy in humans and mice. Nat Med 2014 ; 20 : 992–1000. [CrossRef] [PubMed] [Google Scholar]
- Waldrop M. Expression of apparent full-length dystrophin in skeletal muscle in a first-in-human gene therapy trial using the scAAV9.U7-ACCA vector. Neuromuscul Disord 2020; S166–7. [Google Scholar]
- Singh NK, Singh NN, Androphy EJ, et al. Splicing of a critical exon of human survival motor neuron is regulated by a unique silencer element located in the last intron. Mol Cell Biol 2006 ; 26 : 1333–1346. [CrossRef] [PubMed] [Google Scholar]
- Hua Y, Sahashi K, Hung G, et al. Antisense correction of SMN2 splicing in the CNS rescues necrosis in a type III SMA mouse model. Genes Dev 2010 ; 24 : 1634–1644. [CrossRef] [PubMed] [Google Scholar]
- Hua Y, Sahashi K, Rigo F, et al. Peripheral SMN restoration is essential for long-term rescue of a severe SMA mouse model. Nature 2011 ; 478 : 123–126. [CrossRef] [PubMed] [Google Scholar]
- Gargaun E. Les oligonucléotides anti-sens dans la SMA : retour d’expérience et données de la littérature. Med Sci (Paris) 2019; 35 (hors série n° 2) : 11–4. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- De Vivo DC, Bertini E, Swoboda KJ, et al. Nusinersen initiated in infants during the presymptomatic stage of spinal muscular atrophy: Interim efficacy and safety results from the Phase 2 NURTURE study. Neuromuscul Disord 2019 ; 29 : 842–856. [CrossRef] [PubMed] [Google Scholar]
- Hammond SM, Hazell G, Shabanpoor F, et al. Systemic peptide-mediated oligonucleotide therapy improves long-term survival in spinal muscular atrophy. Proc Natl Acad Sci USA 2016 ; 113 : 10962–10967. [Google Scholar]
- Campagne S, Boigner S, Rüdisser S, et al. Structural basis of a small molecule targeting RNA for a specific splicing correction. Nat Chem Biol 2019 ; 15 : 1191–1198. [CrossRef] [PubMed] [Google Scholar]
- Poirier A, Weetall M, Heinig K, et al. Risdiplam distributes and increases SMN protein in both the central nervous system and peripheral organs. Pharmacol Res Perspect 2018 ; 6 : e00447. [CrossRef] [PubMed] [Google Scholar]
- Cheung AK, Hurley B, Kerrigan R, et al. Discovery of small molecule splicing modulators of survival motor neuron-2 (SMN2) for the treatment of spinal muscular atrophy (SMA). J Med Chem 2018 ; 61 : 11021–11036. [CrossRef] [PubMed] [Google Scholar]
- Godfrey C, Desviat LR, Smedsrød B, et al. Delivery is key: lessons learnt from developing splice-switching antisense therapies. EMBO Mol Med 2017 ; 9 : 545–557. [CrossRef] [PubMed] [Google Scholar]
- Bizot F, Vulin A, Goyenvalle A. Current status of antisense oligonucleotide-based therapy in neuromuscular disorders. Drugs 2020; 80 : 1397–415. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.