Open Access
Numéro |
Med Sci (Paris)
Volume 37, Numéro 6-7, Juin-Juillet 2021
|
|
---|---|---|
Page(s) | 618 - 624 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2021085 | |
Publié en ligne | 28 juin 2021 |
- Knowlton RG, Cohen-Haguenauer O, Van Cong N, et al. A polymorphic DNA marker linked to cystic fibrosis is located on chromosome 7. Nature 1985 ; 318 : 380–382. [PubMed] [Google Scholar]
- Wainwright BJ, Scambler PJ, Schmidtke J, et al. Localization of cystic fibrosis locus to human chromosome 7cen-q22. Nature 1985 ; 318 : 384–385. [PubMed] [Google Scholar]
- Rommens JM, Iannuzzi MC, Kerem B, et al. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 1989 ; 245 : 1059–1065. [PubMed] [Google Scholar]
- Riordan JR, Rommens JM, Kerem B, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 1989 ; 245 : 1066–1073. [Google Scholar]
- Kerem B, Rommens JM, Buchanan JA, et al. Identification of the cystic fibrosis gene: genetic analysis. Science 1989 ; 245 : 1073–1080. [PubMed] [Google Scholar]
- Mornon JP, Hoffmann B, Jonic S, et al. Full-open and closed CFTR channels, with lateral tunnels from the cytoplasm and an alternative position of the F508 region, as revealed by molecular dynamics. Cell Mol Life Sci 2015 ; 72 : 1377–1403. [PubMed] [Google Scholar]
- Farrell P, Férec C, Macek M, et al. Estimating the age of p. (Phe508del) with family studies of geographically distinct European populations and the early spread of cystic fibrosis. Eur J Hum Genet 2018 ; 26 : 1832–1839. [PubMed] [Google Scholar]
- Audrézet MP, Mercier B, Guillermit H, et al. Identification of 12 novel mutations in the CFTR gene. Hum Mol Genet 1993 ; 2 : 51–54. [CrossRef] [PubMed] [Google Scholar]
- Férec C, Audrezet MP, Mercier B, et al. Detection of over 98% cystic fibrosis mutations in a Celtic population. Nat Genet 1992 ; 1 : 188–191. [CrossRef] [PubMed] [Google Scholar]
- Bobadilla JL, Macek M, Fine JP, et al. Cystic fibrosis: a worldwide analysis of CFTR mutations: correlation with incidence data and application to screening. Hum Mutat 2002 ; 19 : 575–606. [CrossRef] [PubMed] [Google Scholar]
- Dörk T, Macek M, Mekus F, et al. Characterization of a novel 21-kb deletion, CFTRdele2,3(21 kb), in the CFTR gene: a cystic fibrosis mutation of Slavic origin common in Central and East Europe. Hum Genet 2000 ; 106 : 259–268. [CrossRef] [PubMed] [Google Scholar]
- Claustres M, Thèze C, Georges M des, et al. CFTR-France, a national relational patient database for sharing genetic and phenotypic data associated with rare CFTR variants. Hum Mutat 2017; 38 : 1297–315. [CrossRef] [PubMed] [Google Scholar]
- Welsh MJ, Smith AE. Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 1993 ; 73 : 1251–1254. [CrossRef] [PubMed] [Google Scholar]
- Kerem E, Corey M, Kerem BS, et al. The relation between genotype and phenotype in cystic fibrosis–analysis of the most common mutation (delta F508). N Engl J Med 1990 ; 323 : 1517–1522. [CrossRef] [PubMed] [Google Scholar]
- Ferec C, Cutting GR. Assessing the disease-liability of mutations in CFTR. Cold Spring Harb Perspect Med 2012 ; 2 : a009480. [CrossRef] [PubMed] [Google Scholar]
- Feigelson J, Pecau Y, Shwachman H. Paternity in a patient with mucoviscidosis. Study of genital functions and filiation. Arch Fr Pediatr 1969 ; 26 : 937–944. [PubMed] [Google Scholar]
- Dumur V, Gervais R, Rigot JM, et al. Abnormal distribution of CF delta F508 allele in azoospermic men with congenital aplasia of epididymis and vas deferens. Lancet 1990 ; 336 : 512. [CrossRef] [PubMed] [Google Scholar]
- Anguiano A, Oates RD, Amos JA, et al. Congenital bilateral absence of the vas deferens. A primarily genital form of cystic fibrosis. JAMA 1992 ; 267 : 1794–1797. [CrossRef] [PubMed] [Google Scholar]
- Chillón M, Casals T, Mercier B, et al. Mutations in the cystic fibrosis gene in patients with congenital absence of the vas deferens. N Engl J Med 1995 ; 332 : 1475–1480. [CrossRef] [PubMed] [Google Scholar]
- Mercier B, Verlingue C, Lissens W, et al. Is congenital bilateral absence of vas deferens a primary form of cystic fibrosis? Analyses of the CFTR gene in 67 patients. Am J Hum Genet 1995 ; 56 : 272–277. [CrossRef] [PubMed] [Google Scholar]
- Cohn JA, Friedman KJ, Noone PG, et al. Relation between mutations of the cystic fibrosis gene and idiopathic pancreatitis. N Engl J Med 1998 ; 339 : 653–658. [CrossRef] [PubMed] [Google Scholar]
- Masson E, Chen JM, Audrézet MP, et al. A conservative assessment of the major genetic causes of idiopathic chronic pancreatitis: data from a comprehensive analysis of PRSS1, SPINK1, CTRC and CFTR genes in 253 young French patients. PLoS One 2013 ; 8 : e73522. [CrossRef] [PubMed] [Google Scholar]
- Chen J-M, Férec C. Chronic pancreatitis: genetics and pathogenesis. Annu Rev Genomics Hum Genet 2009 ; 10 : 63–87. [CrossRef] [PubMed] [Google Scholar]
- Miller AC, Comellas AP, Hornick DB, et al. Cystic fibrosis carriers are at increased risk for a wide range of cystic fibrosis-related conditions. Proc Natl Acad Sci USA 2020; 117 : 1621–7. [CrossRef] [Google Scholar]
- Bombieri C, Claustres M, De Boeck K, et al. Recommendations for the classification of diseases as CFTR-related disorders. J Cyst Fibros 2011 ; 10 : S86–102. [CrossRef] [PubMed] [Google Scholar]
- Farrell PM, Kosorok MR, Rock MJ, et al. Early diagnosis of cystic fibrosis through neonatal screening prevents severe malnutrition and improves long-term growth. Wisconsin cystic fibrosis neonatal screening study group. Pediatrics 2001 ; 107 : 1–13. [CrossRef] [PubMed] [Google Scholar]
- Scotet V, de Braekeleer M, Roussey M, et al. Neonatal screening for cystic fibrosis in Brittany, France: assessment of 10 years’ experience and impact on prenatal diagnosis. Lancet 2000 ; 356 : 789–794. [CrossRef] [PubMed] [Google Scholar]
- Scotet V, L’Hostis C, Férec C. The changing epidemiology of cystic fibrosis: incidence, survival and impact of the cftr gene discovery. Genes 2020; 11 : 589. [CrossRef] [Google Scholar]
- Krauss RD, Bubien JK, Drumm ML, et al. Transfection of wild-type CFTR into cystic fibrosis lymphocytes restores chloride conductance at G1 of the cell cycle. EMBO J 1992 ; 11 : 875–883. [CrossRef] [PubMed] [Google Scholar]
- Belmadi N, Midoux P, Loyer P, et al. Synthetic vectors for gene delivery: an overview of their evolution depending on routes of administration. Biotechnol J 2015 ; 10 : 1370–1389. [CrossRef] [PubMed] [Google Scholar]
- Anguela XM, High KA. Entering the modern era of gene therapy. Ann Rev Med 2019 ; 70 : 273–288. [CrossRef] [Google Scholar]
- Bellec J, Bacchetta M, Losa D, et al. CFTR inactivation by lentiviral vector-mediated RNA interference and CRISPR-Cas9 genome editing in human airway epithelial cells. Curr Gene Ther 2015 ; 15 : 447–459. [CrossRef] [PubMed] [Google Scholar]
- Kerem E, Konstan MW, De Boeck K, et al. Ataluren for the treatment of nonsense-mutation cystic fibrosis: a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Respir Med 2014 ; 2 : 539–547. [CrossRef] [PubMed] [Google Scholar]
- Van Goor F, Hadida S, Grootenhuis PDJ, et al. Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc Natl Acad Sci USA 2009 ; 106 : 18825–18830. [CrossRef] [Google Scholar]
- Ramsey BW, Davies J, McElvaney NG, et al. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med 2011 ; 365 : 1663–1672. [CrossRef] [PubMed] [Google Scholar]
- Wainwright CE, Elborn JS, Ramsey BW, et al. Lumacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR. N Engl J Med 2015 ; 373 : 220–231. [CrossRef] [PubMed] [Google Scholar]
- Keating D, Marigowda G, Burr L, et al. VX-445-Tezacaftor-ivacaftor in patients with cystic fibrosis and one or two Phe508del alleles. N Engl J Med 2018 ; 379 : 1612–1620. [CrossRef] [PubMed] [Google Scholar]
- Heijerman HGM, McKone EF, Downey DG, et al. Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation: a double-blind, randomised, phase 3 trial. Lancet 2019 ; 394 : 1940–1948. [CrossRef] [PubMed] [Google Scholar]
- Davies JC, Moskowitz SM, Brown C, et al. VX-659-tezacaftor-ivacaftor in patients with cystic fibrosis and one or two Phe508del alleles. N Engl J Med 2018 ; 379 : 1599–1611. [CrossRef] [PubMed] [Google Scholar]
- Middleton PG, Mall MA, Drˇevínek P, et al. Elexacaftor-tezacaftor-ivacaftor for cystic fibrosis with a single Phe508del allele. N Engl J Med 2019 ; 381 : 1809–1819. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.