Open Access
Issue |
Med Sci (Paris)
Volume 37, Number 6-7, Juin-Juillet 2021
|
|
---|---|---|
Page(s) | 618 - 624 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2021085 | |
Published online | 28 June 2021 |
- Knowlton RG, Cohen-Haguenauer O, Van Cong N, et al. A polymorphic DNA marker linked to cystic fibrosis is located on chromosome 7. Nature 1985 ; 318 : 380–382. [PubMed] [Google Scholar]
- Wainwright BJ, Scambler PJ, Schmidtke J, et al. Localization of cystic fibrosis locus to human chromosome 7cen-q22. Nature 1985 ; 318 : 384–385. [PubMed] [Google Scholar]
- Rommens JM, Iannuzzi MC, Kerem B, et al. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 1989 ; 245 : 1059–1065. [PubMed] [Google Scholar]
- Riordan JR, Rommens JM, Kerem B, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 1989 ; 245 : 1066–1073. [Google Scholar]
- Kerem B, Rommens JM, Buchanan JA, et al. Identification of the cystic fibrosis gene: genetic analysis. Science 1989 ; 245 : 1073–1080. [PubMed] [Google Scholar]
- Mornon JP, Hoffmann B, Jonic S, et al. Full-open and closed CFTR channels, with lateral tunnels from the cytoplasm and an alternative position of the F508 region, as revealed by molecular dynamics. Cell Mol Life Sci 2015 ; 72 : 1377–1403. [PubMed] [Google Scholar]
- Farrell P, Férec C, Macek M, et al. Estimating the age of p. (Phe508del) with family studies of geographically distinct European populations and the early spread of cystic fibrosis. Eur J Hum Genet 2018 ; 26 : 1832–1839. [PubMed] [Google Scholar]
- Audrézet MP, Mercier B, Guillermit H, et al. Identification of 12 novel mutations in the CFTR gene. Hum Mol Genet 1993 ; 2 : 51–54. [CrossRef] [PubMed] [Google Scholar]
- Férec C, Audrezet MP, Mercier B, et al. Detection of over 98% cystic fibrosis mutations in a Celtic population. Nat Genet 1992 ; 1 : 188–191. [CrossRef] [PubMed] [Google Scholar]
- Bobadilla JL, Macek M, Fine JP, et al. Cystic fibrosis: a worldwide analysis of CFTR mutations: correlation with incidence data and application to screening. Hum Mutat 2002 ; 19 : 575–606. [CrossRef] [PubMed] [Google Scholar]
- Dörk T, Macek M, Mekus F, et al. Characterization of a novel 21-kb deletion, CFTRdele2,3(21 kb), in the CFTR gene: a cystic fibrosis mutation of Slavic origin common in Central and East Europe. Hum Genet 2000 ; 106 : 259–268. [CrossRef] [PubMed] [Google Scholar]
- Claustres M, Thèze C, Georges M des, et al. CFTR-France, a national relational patient database for sharing genetic and phenotypic data associated with rare CFTR variants. Hum Mutat 2017; 38 : 1297–315. [CrossRef] [PubMed] [Google Scholar]
- Welsh MJ, Smith AE. Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 1993 ; 73 : 1251–1254. [CrossRef] [PubMed] [Google Scholar]
- Kerem E, Corey M, Kerem BS, et al. The relation between genotype and phenotype in cystic fibrosis–analysis of the most common mutation (delta F508). N Engl J Med 1990 ; 323 : 1517–1522. [CrossRef] [PubMed] [Google Scholar]
- Ferec C, Cutting GR. Assessing the disease-liability of mutations in CFTR. Cold Spring Harb Perspect Med 2012 ; 2 : a009480. [CrossRef] [PubMed] [Google Scholar]
- Feigelson J, Pecau Y, Shwachman H. Paternity in a patient with mucoviscidosis. Study of genital functions and filiation. Arch Fr Pediatr 1969 ; 26 : 937–944. [PubMed] [Google Scholar]
- Dumur V, Gervais R, Rigot JM, et al. Abnormal distribution of CF delta F508 allele in azoospermic men with congenital aplasia of epididymis and vas deferens. Lancet 1990 ; 336 : 512. [CrossRef] [PubMed] [Google Scholar]
- Anguiano A, Oates RD, Amos JA, et al. Congenital bilateral absence of the vas deferens. A primarily genital form of cystic fibrosis. JAMA 1992 ; 267 : 1794–1797. [CrossRef] [PubMed] [Google Scholar]
- Chillón M, Casals T, Mercier B, et al. Mutations in the cystic fibrosis gene in patients with congenital absence of the vas deferens. N Engl J Med 1995 ; 332 : 1475–1480. [CrossRef] [PubMed] [Google Scholar]
- Mercier B, Verlingue C, Lissens W, et al. Is congenital bilateral absence of vas deferens a primary form of cystic fibrosis? Analyses of the CFTR gene in 67 patients. Am J Hum Genet 1995 ; 56 : 272–277. [CrossRef] [PubMed] [Google Scholar]
- Cohn JA, Friedman KJ, Noone PG, et al. Relation between mutations of the cystic fibrosis gene and idiopathic pancreatitis. N Engl J Med 1998 ; 339 : 653–658. [CrossRef] [PubMed] [Google Scholar]
- Masson E, Chen JM, Audrézet MP, et al. A conservative assessment of the major genetic causes of idiopathic chronic pancreatitis: data from a comprehensive analysis of PRSS1, SPINK1, CTRC and CFTR genes in 253 young French patients. PLoS One 2013 ; 8 : e73522. [CrossRef] [PubMed] [Google Scholar]
- Chen J-M, Férec C. Chronic pancreatitis: genetics and pathogenesis. Annu Rev Genomics Hum Genet 2009 ; 10 : 63–87. [CrossRef] [PubMed] [Google Scholar]
- Miller AC, Comellas AP, Hornick DB, et al. Cystic fibrosis carriers are at increased risk for a wide range of cystic fibrosis-related conditions. Proc Natl Acad Sci USA 2020; 117 : 1621–7. [CrossRef] [Google Scholar]
- Bombieri C, Claustres M, De Boeck K, et al. Recommendations for the classification of diseases as CFTR-related disorders. J Cyst Fibros 2011 ; 10 : S86–102. [CrossRef] [PubMed] [Google Scholar]
- Farrell PM, Kosorok MR, Rock MJ, et al. Early diagnosis of cystic fibrosis through neonatal screening prevents severe malnutrition and improves long-term growth. Wisconsin cystic fibrosis neonatal screening study group. Pediatrics 2001 ; 107 : 1–13. [CrossRef] [PubMed] [Google Scholar]
- Scotet V, de Braekeleer M, Roussey M, et al. Neonatal screening for cystic fibrosis in Brittany, France: assessment of 10 years’ experience and impact on prenatal diagnosis. Lancet 2000 ; 356 : 789–794. [CrossRef] [PubMed] [Google Scholar]
- Scotet V, L’Hostis C, Férec C. The changing epidemiology of cystic fibrosis: incidence, survival and impact of the cftr gene discovery. Genes 2020; 11 : 589. [CrossRef] [Google Scholar]
- Krauss RD, Bubien JK, Drumm ML, et al. Transfection of wild-type CFTR into cystic fibrosis lymphocytes restores chloride conductance at G1 of the cell cycle. EMBO J 1992 ; 11 : 875–883. [CrossRef] [PubMed] [Google Scholar]
- Belmadi N, Midoux P, Loyer P, et al. Synthetic vectors for gene delivery: an overview of their evolution depending on routes of administration. Biotechnol J 2015 ; 10 : 1370–1389. [CrossRef] [PubMed] [Google Scholar]
- Anguela XM, High KA. Entering the modern era of gene therapy. Ann Rev Med 2019 ; 70 : 273–288. [CrossRef] [Google Scholar]
- Bellec J, Bacchetta M, Losa D, et al. CFTR inactivation by lentiviral vector-mediated RNA interference and CRISPR-Cas9 genome editing in human airway epithelial cells. Curr Gene Ther 2015 ; 15 : 447–459. [CrossRef] [PubMed] [Google Scholar]
- Kerem E, Konstan MW, De Boeck K, et al. Ataluren for the treatment of nonsense-mutation cystic fibrosis: a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Respir Med 2014 ; 2 : 539–547. [CrossRef] [PubMed] [Google Scholar]
- Van Goor F, Hadida S, Grootenhuis PDJ, et al. Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc Natl Acad Sci USA 2009 ; 106 : 18825–18830. [CrossRef] [Google Scholar]
- Ramsey BW, Davies J, McElvaney NG, et al. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med 2011 ; 365 : 1663–1672. [CrossRef] [PubMed] [Google Scholar]
- Wainwright CE, Elborn JS, Ramsey BW, et al. Lumacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR. N Engl J Med 2015 ; 373 : 220–231. [CrossRef] [PubMed] [Google Scholar]
- Keating D, Marigowda G, Burr L, et al. VX-445-Tezacaftor-ivacaftor in patients with cystic fibrosis and one or two Phe508del alleles. N Engl J Med 2018 ; 379 : 1612–1620. [CrossRef] [PubMed] [Google Scholar]
- Heijerman HGM, McKone EF, Downey DG, et al. Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation: a double-blind, randomised, phase 3 trial. Lancet 2019 ; 394 : 1940–1948. [CrossRef] [PubMed] [Google Scholar]
- Davies JC, Moskowitz SM, Brown C, et al. VX-659-tezacaftor-ivacaftor in patients with cystic fibrosis and one or two Phe508del alleles. N Engl J Med 2018 ; 379 : 1599–1611. [CrossRef] [PubMed] [Google Scholar]
- Middleton PG, Mall MA, Drˇevínek P, et al. Elexacaftor-tezacaftor-ivacaftor for cystic fibrosis with a single Phe508del allele. N Engl J Med 2019 ; 381 : 1809–1819. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.