Open Access
Med Sci (Paris)
Volume 37, Number 6-7, Juin-Juillet 2021
Page(s) 609 - 617
Section M/S Revues
Published online 28 June 2021
  1. Nothaft H, Szymanski CM. Protein glycosylation in bacteria: sweeter than ever. Nat Rev Microbiol 2010 ; 8 : 765–778. [CrossRef] [PubMed] [Google Scholar]
  2. Aebi M. N-linked protein glycosylation in the ER. Biochim Biophys Acta 2013 ; 1833 : 2430–2437. [CrossRef] [PubMed] [Google Scholar]
  3. Varki A. Biological roles of glycans. Glycobiology 2017 ; 27 : 3–49. [CrossRef] [PubMed] [Google Scholar]
  4. Gagneux P, Aebi M, Varki A. Evolution of glycan diversity. In: Varki A, et al., eds. Essentials of glycobiology, 3rd ed, chapter 20. Cold Spring Harbor : Cold Spring Harbor Laboratory Press, 2017. [Google Scholar]
  5. Krištic´ J, Zoldoš V, Lauc G. Complex genetics of protein N-glycosylation. In: Endo T, et al., eds. Glycoscience: biology and medicine. Tokyo : Springer, 2014 : 1–7. [Google Scholar]
  6. Moremen KW, Tiemeyer M, Nairn AV. Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol 2012 ; 13 : 448–462. [CrossRef] [PubMed] [Google Scholar]
  7. Taniguchi N, Honke K, Fukuda M, et al. (eds). Handbook of glycosyltransferases and related genes. Tokyo : Springer, 2014 : 1–477. [Google Scholar]
  8. Ruddock LW, Molinari M. N-glycan processing in ER quality control. J Cell Sci 2006 ; 119 : 4373–4380. [CrossRef] [PubMed] [Google Scholar]
  9. Xu C, Ng DTW. Glycosylation-directed quality control of protein folding. Nat Rev Mol Cell Biol 2015 ; 16 : 742–752. [CrossRef] [PubMed] [Google Scholar]
  10. Foulquier F. COG defects, birth and rise!. Biochim Biophys Acta 2009 ; 1792 : 896–902. [CrossRef] [PubMed] [Google Scholar]
  11. Reynders E, Foulquier F, Annaert W, et al. How Golgi glycosylation meets and needs trafficking: the case of the COG complex. Glycobiology 2011 ; 21 : 853–863. [CrossRef] [PubMed] [Google Scholar]
  12. D’Souza Z, Taher FS, Lupashin VV. Golgi inCOGnito: from vesicle tethering to human disease. Biochim Biophys Acta Gen Subj 2020; 1864 : 129694. [CrossRef] [PubMed] [Google Scholar]
  13. Wu X, Steet RA, Bohorov O, et al. Mutation of the COG complex subunit gene COG7 causes a lethal congenital disorder. Nat Med 2004 ; 10 : 518–523. [CrossRef] [PubMed] [Google Scholar]
  14. Foulquier F, Ungar D, Reynders E, et al. A new inborn error of glycosylation due to a Cog8 deficiency reveals a critical role for the Cog1-Cog8 interaction in COG complex formation. Hum Mol Genet 2007 ; 16 : 717–730. [CrossRef] [PubMed] [Google Scholar]
  15. Linders PTA, Peters E, Ter Beest M, et al. Sugary logistics gone wrong: membrane trafficking and congenital disorders of glycosylation. Int J Mol Sci 2020; 21 : 4654. [CrossRef] [Google Scholar]
  16. Peanne R, Legrand D, Duvet S, et al. Differential effects of lobe A and lobe B of the conserved oligomeric Golgi complex on the stability of β1,4-galactosyltransferase 1 and α2,6-sialyltransferase 1. Glycobiology 2011 ; 21 : 864–876. [CrossRef] [PubMed] [Google Scholar]
  17. Chia J, Tay F, Bard F. The GalNAc-T Activation (GALA) pathway: drivers and markers. PLoS One 2019 ; 14 : e0214118. [CrossRef] [PubMed] [Google Scholar]
  18. Chia J, Goh G, Bard F. Short O-GalNAc glycans: regulation and role in tumor development and clinical perspectives. Biochim Biophys Acta 2016 ; 1860 : 1623–1639. [CrossRef] [PubMed] [Google Scholar]
  19. Chalat M, Menon I, Turan Z, et al. Reconstitution of glucosylceramide flip-flop across endoplasmic reticulum: implications for mechanism of glycosphingolipid biosynthesis. J Biol Chem 2012 ; 287 : 15523–15532. [CrossRef] [PubMed] [Google Scholar]
  20. Bigay J, Antonny B. Curvature, lipid packing, and electrostatics of membrane organelles: defining cellular territories in determining specificity. Dev Cell 2012 ; 23 : 886–895. [CrossRef] [PubMed] [Google Scholar]
  21. Patterson GH, Hirschberg K, Polishchuk RS, et al. Transport through the Golgi apparatus by rapid partitioning within a two-phase membrane system. Cell 2008 ; 133 : 1055–1067. [CrossRef] [PubMed] [Google Scholar]
  22. Kellokumpu S. Golgi pH, ion and redox homeostasis: how much do they really matter?. Front Cell Dev Biol 2019 ; 7 : 93. [CrossRef] [PubMed] [Google Scholar]
  23. Foulquier F, Legrand D. Biometals and glycosylation in humans: congenital disorders of glycosylation shed lights into the crucial role of Golgi manganese homeostasis. Biochim Biophys Acta Gen Subj 2020; 1864 : 129674. [CrossRef] [PubMed] [Google Scholar]
  24. Munkley J. The role of Sialyl-Tn in cancer. Int J Mol Sci 2016 ; 17 : 275. [CrossRef] [PubMed] [Google Scholar]
  25. Julien S, Lagadec C, Krzewinski-Recchi MA, et al. Stable expression of sialyl-Tn antigen in T47-D cells induces a decrease of cell adhesion and an increase of cell migration. Breast Cancer Res Treat 2005 ; 90 : 77–84. [CrossRef] [PubMed] [Google Scholar]
  26. Zhang L, Zhang Y, Ten Hagen KG. A mucin-type O-glycosyltransferase modulates cell adhesion during Drosophila development. J Biol Chem 2008 ; 283 : 34076–34086. [CrossRef] [PubMed] [Google Scholar]
  27. Victorzon M, Lundin J, Haglund C, et al. A risk score for predicting outcome in patients with gastric cancer, based on stage, sialyl-Tn immunoreactivity and ploidy - a multivariate analysis. Int J Cancer 1996 ; 67 : 190–193. [CrossRef] [PubMed] [Google Scholar]
  28. Ju T, Aryal RP, Kudelka MR, et al. The Cosmc connection to the Tn antigen in cancer. Cancer Biomark 2014 ; 14 : 63–81. [CrossRef] [PubMed] [Google Scholar]
  29. Bennett EP, Mandel U, Clausen H, et al. Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. Glycobiology 2012 ; 22 : 736–756. [CrossRef] [PubMed] [Google Scholar]
  30. Yan X, Lu J, Zou X, et al. The polypeptide N-acetylgalactosaminyltransferase 4 exhibits stage-dependent expression in colorectal cancer and affects tumorigenesis, invasion and differentiation. FEBS J 2018 ; 285 : 3041–3055. [CrossRef] [PubMed] [Google Scholar]
  31. Sewell R, Bäckström M, Dalziel M, et al. The ST6GalNAc-I sialyltransferase localizes throughout the Golgi and is responsible for the synthesis of the tumor-associated sialyl-Tn O-glycan in human breast cancer. J Biol Chem 2006 ; 281 : 3586–3594. [CrossRef] [PubMed] [Google Scholar]
  32. Marcos N, Bennett EP, Gomes J, et al. ST6GalNAc-I controls expression of sialyl-Tn antigen in gastrointestinal tissues. Front Biosci (Elite Ed) 2011 ; 3 : 1443–1455. [PubMed] [Google Scholar]
  33. Ju T, Aryal RP, Stowell CJ, et al. Regulation of protein O-glycosylation by the endoplasmic reticulum-localized molecular chaperone Cosmc. J Cell Biol 2008 ; 182 : 531–542. [CrossRef] [PubMed] [Google Scholar]
  34. Ju T, Lanneau GS, Gautam T, et al. Human tumor antigens Tn and sialyl Tn arise from mutations in Cosmc. Cancer Res 2008 ; 68 : 1636–1646. [CrossRef] [PubMed] [Google Scholar]
  35. Gill DJ, Chia J, Senewiratne J, et al. Regulation of O-glycosylation through Golgi-to-ER relocation of initiation enzymes. J Cell Biol 2010 ; 189 : 843–858. [CrossRef] [PubMed] [Google Scholar]
  36. Julien S, Videira PA, Delannoy P. Sialyl-Tn in cancer: (how) did we miss the target?. Biomolecules 2012 ; 2 : 435–466. [CrossRef] [PubMed] [Google Scholar]
  37. Eavarone DA, Al-Alem L, Lugovskoy A, et al. Humanized anti-Sialyl-Tn antibodies for the treatment of ovarian carcinoma. PLoS One 2018 ; 13 : e0201314. [CrossRef] [PubMed] [Google Scholar]
  38. Loureiro LR, Feldmann A, Bergmann R, et al. Extended half-life target module for sustainable UniCAR T-cell treatment of STn-expressing cancers. J Exp Clin Cancer Res 2020; 39 : 77. [CrossRef] [PubMed] [Google Scholar]
  39. Groux-Degroote S, Guérardel Y, Delannoy P. Gangliosides: structures, biosynthesis, analysis, and roles in cancer. Chembiochem 2017 ; 18 : 1146–1154. [CrossRef] [PubMed] [Google Scholar]
  40. Julien S, Bobowski M, Steenackers A, et al. How do gangliosides regulate RTKs signaling?. Cells 2013 ; 2 : 751–767. [CrossRef] [PubMed] [Google Scholar]
  41. Skaper SD, Leon A, Toffano G. Ganglioside function in the development and repair of the nervous system. From basic science to clinical application. Mol Neurobiol Fall 1989; 3 : 173–99. [CrossRef] [Google Scholar]
  42. Yoshida S, Fukumoto S, Kawaguchi H, et al. Ganglioside GD2 in small cell lung cancer cell lines: enhancement of cell proliferation and mediation of apoptosis. Cancer Res 2001 ; 61 : 4244–4252. [PubMed] [Google Scholar]
  43. Furukawa K, Hamamura K, Aixinjueluo W. Biosignals modulated by tumor-associated carbohydrate antigens: novel targets for cancer therapy. Ann NY Acad Sci 2006 ; 1086 : 185–198. [CrossRef] [Google Scholar]
  44. Zeng G, Gao L, Yu RK. Reduced cell migration, tumor growth and experimental metastasis of rat F-11 cells whose expression of GD3-synthase is suppressed. Int J Cancer 2000 ; 88 : 53–57. [CrossRef] [PubMed] [Google Scholar]
  45. Dhillon S. Dinutuximab: first global approval. Drugs 2015 ; 75 : 923–927. [CrossRef] [PubMed] [Google Scholar]
  46. Cazet A, Groux-Degroote S, Catieau-Teylaert B, et al. GD3 synthase over-expression enhances proliferation and migration of MDA-MB-231 breast cancer cells. Biol Chem 2009 ; 390 : 601–609. [CrossRef] [PubMed] [Google Scholar]
  47. Cazet A, Lefebvre J, Adriaenssens E, et al. GD3 synthase expression enhances proliferation and tumor growth of MDA-MB-231 breast cancer cells through c-Met activation. Mol Cancer Res 2010 ; 8 : 1526–1535. [CrossRef] [PubMed] [Google Scholar]
  48. Cazet A, Bobowski M, Rombouts Y, et al. The ganglioside GD2 induces the constitutive activation of c-Met in MDA-MB-231 breast cancer cells expressing the GD3 synthase. Glycobiology 2012 ; 22 : 806–816. [CrossRef] [PubMed] [Google Scholar]
  49. Bobowski M, Vincent A, Steenackers A, et al. Estradiol represses the GD3 synthase gene ST8SIA1 expression in human breast cancer cells by preventing NFκB binding to ST8SIA1 promoter. PLoS One 2013 ; 8 : e62559. [CrossRef] [PubMed] [Google Scholar]
  50. Dae HM, Kwon HY, Kang NY, et al. Isolation and functional analysis of the human glioblastoma-specific promoter region of the human GD3 synthase (hST8Sia I) gene. Acta Biochim Biophys Sin (Shanghai) 2009 ; 41 : 237–245. [CrossRef] [PubMed] [Google Scholar]
  51. Kang NY, Kim CH, Kim KS, et al. Expression of the human CMP-NeuAc: GM3 α2,8-sialyltransferase (GD3 synthase) gene through the NF-κB activation in human melanoma SK-MEL-2 cells. Biochim Biophys Acta; 1769 : 622–30. [Google Scholar]
  52. Furukawa K, Kambe M, Miyata M, et al. Ganglioside GD3 induces convergence and synergism of adhesion and hepatocyte growth factor/Met signals in melanomas. Cancer Sci 2014 ; 105 : 52–63. [CrossRef] [PubMed] [Google Scholar]
  53. Hamamura K, Furukawa K, Hayashi T, et al. Ganglioside GD3 promotes cell growth and invasion through p130Cas and paxillin in malignant melanoma cells. Proc Natl Acad Sci USA 2005 ; 102 : 11041–11046. [CrossRef] [Google Scholar]
  54. Ohkawa Y, Miyazaki S, Miyata M, et al. Essential roles of integrin-mediated signaling for the enhancement of malignant properties of melanomas based on the expression of GD3. Biochem Biophys Res Commun 2008 ; 373 : 14–19. [CrossRef] [PubMed] [Google Scholar]
  55. Ohkawa Y, Miyazaki S, Hamamura K, et al. Ganglioside GD3 enhances adhesion signals and augments malignant properties of melanoma cells by recruiting integrins to glycolipid-enriched microdomains. J Biol Chem 2010 ; 285 : 27213–27223. [CrossRef] [PubMed] [Google Scholar]
  56. Hamamura K, Tsuji M, Hotta H, et al. Functional activation of Src family kinase Yes protein is essential for the enhanced malignant properties of human melanoma cells expressing ganglioside GD3. J Biol Chem 2011 ; 286 : 18526–18537. [CrossRef] [PubMed] [Google Scholar]
  57. Aixinjueluo W, Furukawa K, Zhang Q, et al. Mechanisms for the apoptosis of small cell lung cancer cells induced by anti-GD2 monoclonal antibodies: roles of anoikis. J Biol Chem 2005 ; 280 : 29828–29836. [CrossRef] [PubMed] [Google Scholar]
  58. Shibuya H, Hamamura K, Hotta H, et al. Enhancement of malignant properties of human osteosarcoma cells with disialyl gangliosides GD2/GD3. Cancer Sci 2012 ; 103 : 1656–1664. [CrossRef] [PubMed] [Google Scholar]
  59. Okada M, Itoh Mi MI, Haraguchi M, et al. b-series ganglioside deficiency exhibits no definite changes in the neurogenesis and the sensitivity to Fas-mediated apoptosis but impairs regeneration of the lesioned hypoglossal nerve. J Biol Chem 2002 ; 277 : 1633–1636. [CrossRef] [PubMed] [Google Scholar]
  60. Cavdarli S, Dewald JH, Yamakawa N, et al. Identification of 9-O-acetyl-N-acetylneuraminic acid (Neu5,9Ac2) as main O-acetylated sialic acid species of GD2 in breast cancer cells. Glycoconj J 2019 ; 36 : 79–90. [CrossRef] [PubMed] [Google Scholar]
  61. Terme M, Dorvillius M, Cochonneau D, et al. Chimeric antibody c.8B6 to O-acetyl-GD2 mediates the same efficient anti-neuroblastoma effects as therapeutic ch14.18 antibody to GD2 without antibody induced allodynia. PLoS One 2014 ; 9 : e87210. [CrossRef] [PubMed] [Google Scholar]
  62. Baumann AM, Bakkers MJ, Buettner FF, et al. 9-O-Acetylation of sialic acids is catalyzed by CASD1 via a covalent acetyl-enzyme intermediate. Nat Commun 2015 ; 6 : 7673. [CrossRef] [PubMed] [Google Scholar]
  63. Cavdarli S, Delannoy P, Groux-Degroote S. O-acetylated gangliosides as targets for cancer immunotherapy. Cells 2020; 9 : 741. [CrossRef] [Google Scholar]
  64. Neelamegham S, Aoki-Kinoshita K, Bolton E. Updates to the symbol nomenclature for glycans guidelines. Glycobiology 2019 ; 29 : 620–624. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.