Free Access
Issue
Med Sci (Paris)
Volume 37, Number 6-7, Juin-Juillet 2021
Page(s) 601 - 608
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2021090
Published online 28 June 2021
  1. Daubney R, Hudson JR, Garnham PC. Enzootic hepatitis or Rift Valley fever. an undescribed virus disease of sheep cattle and man from East Africa. J Pathol Bacteriol 1931 ; 34 : 545–579. [CrossRef] [Google Scholar]
  2. Wright D, Kortekaas J, Bowden TA, Warimwe GM. Rift Valley fever: biology and epidemiology. J Gen Virol 2019 ; 100 : 1187–1199. [CrossRef] [PubMed] [Google Scholar]
  3. Lumley S, Horton DL, Hernandez-Triana LLM, et al. Rift Valley fever virus: strategies for maintenance, survival and vertical transmission in mosquitoes. J Gen Virol 2017 ; 98 : 875–887. [CrossRef] [PubMed] [Google Scholar]
  4. Peyre M, Chevalier V, Abdo-Salem S, et al. A systematic scoping study of the socio-economic impact of Rift Valley fever: research gaps and needs. Zoonoses Public Health 2015 ; 62 : 309–325. [CrossRef] [PubMed] [Google Scholar]
  5. Linthicum KJ, Britch SC, Anyamba A. Rift Valley fever: an emerging mosquito-borne disease. Annu Rev Entomol 2016 ; 61 : 395–415. [CrossRef] [PubMed] [Google Scholar]
  6. Leger P, Nachman E, Richter K, et al. NSs amyloid formation is associated with the virulence of Rift Valley fever virus in mice. Nat Commun 2020; 11 : 3281. [CrossRef] [PubMed] [Google Scholar]
  7. Freiberg AN, Sherman MB, Morais MC, et al. Three-dimensional organization of Rift Valley fever virus revealed by cryoelectron tomography. J Virol 2008 ; 82 : 10341–10348. [CrossRef] [PubMed] [Google Scholar]
  8. Léger P, Lozach PY. Bunyaviruses: from transmission by arthropods to virus entry into the mammalian host first-target cells. Future Virol 2015 ; 10 : 859–881. [CrossRef] [Google Scholar]
  9. Wuerth JD, Weber F. Phleboviruses and the type I interferon response. Viruses 2016 ; 8 : 174. [CrossRef] [Google Scholar]
  10. De Boer SM, Kortekaas J, de Haan CA, et al. Heparan sulfate facilitates Rift Valley fever virus entry into the cell. J Virol 2012 ; 86 : 13767–13771. [CrossRef] [PubMed] [Google Scholar]
  11. Riblett AM, Blomen VA, Jae LT, et al. A haploid genetic screen identifies heparan sulfate proteoglycans supporting Rift Valley fever virus infection. J Virol 2016 ; 90 : 1414–1423. [CrossRef] [PubMed] [Google Scholar]
  12. Leger P, Tetard M, Youness B, et al. Differential use of the C-type lectins L-SIGN and DC-SIGN for phlebovirus endocytosis. Traffic 2016 ; 17 : 639–656. [CrossRef] [PubMed] [Google Scholar]
  13. Lozach PY, Kuhbacher A, Meier R, et al. DC-SIGN as a receptor for phleboviruses. Cell Host Microbe 2011 ; 10 : 75–88. [CrossRef] [PubMed] [Google Scholar]
  14. Meier R, Helenius A, Lozach PY. DC-SIGN, un récepteur des phlébovirus : dynamique des interactions virus-récepteur. Med Sci (Paris) 2012 ; 28 : 16–18. [CrossRef] [EDP Sciences] [Google Scholar]
  15. de Boer SM, Kortekaas J, Spel L, et al. Acid-activated structural reorganization of the Rift Valley fever virus Gc fusion protein. J Virol 2012 ; 86 : 13642–13652. [CrossRef] [PubMed] [Google Scholar]
  16. Uckeley ZM, Koch J, Tischler ND, et al. Cell biology of phlebovirus entry. Virologie (Montrouge) 2019 ; 23 : 176–187. [Google Scholar]
  17. Albornoz A, Hoffmann AB, Lozach PY, Tischler ND. Early bunyavirus-host cell interactions. Viruses 2016 ; 8 : 143. [Google Scholar]
  18. Lozach PY, Mancini R, Bitto D, et al. Entry of bunyaviruses into mammalian cells. Cell Host Microbe 2010 ; 7 : 488–499. [CrossRef] [PubMed] [Google Scholar]
  19. Wu Y, Zhu Y, Gao F, et al. Structures of phlebovirus glycoprotein Gn and identification of a neutralizing antibody epitope. Proc Natl Acad Sci USA 2017 ; 114 : E7564–E7573. [CrossRef] [Google Scholar]
  20. Dessau M, Modis Y. Crystal structure of glycoprotein C from Rift Valley fever virus. Proc Natl Acad Sci USA 2013 ; 110 : 1696–1701. [CrossRef] [Google Scholar]
  21. Won S, Ikegami T, Peters CJ, Makino S. NSm and 78-kilodalton proteins of Rift Valley fever virus are nonessential for viral replication in cell culture. J Virol 2006 ; 80 : 8274–8278. [CrossRef] [PubMed] [Google Scholar]
  22. Kreher F, Tamietti C, Gommet C, et al. The Rift Valley fever accessory proteins NSm and P78/NSm-GN are distinct determinants of virus propagation in vertebrate and invertebrate hosts. Emerg Microbes Infect 2014 ; 3 : e71. [CrossRef] [PubMed] [Google Scholar]
  23. Hornak KE, Lanchy JM, Lodmell JS. RNA Encapsidation and packaging in the phleboviruses. Viruses 2016 ; 8 : 194. [CrossRef] [Google Scholar]
  24. Uckeley ZM, Moeller R, Kuhn LI, et al. Quantitative proteomics of Uukuniemi virus-host cell interactions reveals gbf1 as proviral host factor for phleboviruses. Mol Cell Proteomics 2019 ; 18 : 2401–2417. [CrossRef] [PubMed] [Google Scholar]
  25. Allen ER, Krumm SA, Raghwani J, et al. A Protective monoclonal antibody targets a site of vulnerability on the surface of Rift Valley fever virus. Cell Rep 2018 ; 25 : 3750–8 e4. [CrossRef] [Google Scholar]
  26. Terasaki K, Makino S. Interplay between the virus and host in Rift Valley fever pathogenesis. J Innate Immun 2015 ; 7 : 450–458. [CrossRef] [PubMed] [Google Scholar]
  27. Barski M, Brennan B, Miller OK, et al. Rift Valley fever phlebovirus NSs protein core domain structure suggests molecular basis for nuclear filaments. eLife 2017; 6 : e29236. [CrossRef] [PubMed] [Google Scholar]
  28. Cyr N, de la Fuente C, Lecoq L, et al. A OmegaXaV motif in the Rift Valley fever virus NSs protein is essential for degrading p62, forming nuclear filaments and virulence. Proc Natl Acad Sci USA 2015 ; 112 : 6021–6026. [CrossRef] [Google Scholar]
  29. Lau S, Weber F. Nuclear pore protein Nup98 is involved in replication of Rift Valley fever virus and nuclear import of virulence factor NSs. J Gen Virol 2020; 101 : 712–6. [CrossRef] [PubMed] [Google Scholar]
  30. Copeland AM, Van Deusen NM, Schmaljohn CS. Rift Valley fever virus NSS gene expression correlates with a defect in nuclear mRNA export. Virology 2015 ; 486 : 88–93. [CrossRef] [PubMed] [Google Scholar]
  31. Bamia A, Marcato V, Boissiere M, et al. The NSs protein encoded by the virulent strain of Rift Valley fever virus targets the expression of Abl2 and the actin cytoskeleton of the host, affecting cell mobility, cell shape, and cell-cell adhesion. J Virol 2020; 95 : e01768–20. [CrossRef] [PubMed] [Google Scholar]
  32. Bouloy M, Janzen C, Vialat P, et al. Genetic evidence for an interferon-antagonistic function of Rift Valley fever virus nonstructural protein NSs. J Virol 2001 ; 75 : 1371–1377. [CrossRef] [PubMed] [Google Scholar]
  33. Swanepoel R, Blackburn NK. Demonstration of nuclear immunofluorescence in Rift Valley fever infected cells. J Gen Virol 1977 ; 34 : 557–561. [CrossRef] [PubMed] [Google Scholar]
  34. Benferhat R, Josse T, Albaud B, et al. Large-scale chromatin immunoprecipitation with promoter sequence microarray analysis of the interaction of the NSs protein of Rift Valley fever virus with regulatory DNA regions of the host genome. J Virol 2012 ; 86 : 11333–11344. [CrossRef] [PubMed] [Google Scholar]
  35. Knowles TP, Vendruscolo M, Dobson CM. The amyloid state and its association with protein misfolding diseases. Nat Rev Mol Cell Biol 2014 ; 15 : 384–396. [CrossRef] [PubMed] [Google Scholar]
  36. Grateau G, Verine J, Delpech M, Ries M. Les amyloses, un modèle de maladie du repliement des protéines. Med Sci (Paris) 2005 ; 21 : 627–633. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  37. Collinge J. Mammalian prions and their wider relevance in neurodegenerative diseases. Nature 2016 ; 539 : 217–226. [CrossRef] [PubMed] [Google Scholar]
  38. Biancalana M, Koide S. Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim Biophys Acta 2010 ; 1804 : 1405–1412. [CrossRef] [PubMed] [Google Scholar]
  39. Monteiro GER, Jansen van Vuren P, Wichgers Schreur PJ, et al. Mutation of adjacent cysteine residues in the NSs protein of Rift Valley fever virus results in loss of virulence in mice. Virus Res 2018 ; 249 : 31–44. [CrossRef] [PubMed] [Google Scholar]
  40. Le May N, Dubaele S, Proietti De Santis L, et al. TFIIH transcription factor, a target for the Rift Valley hemorrhagic fever virus. Cell 2004 ; 116 : 541–550. [CrossRef] [PubMed] [Google Scholar]
  41. Le May N, Mansuroglu Z, Leger P, et al. A SAP30 complex inhibits IFN-beta expression in Rift Valley fever virus infected cells. PLoS Pathog 2008 ; 4 : e13. [CrossRef] [PubMed] [Google Scholar]
  42. Ikegami T, Narayanan K, Won S, et al. Rift Valley fever virus NSs protein promotes post-transcriptional downregulation of protein kinase PKR and inhibits eIF2alpha phosphorylation. PLoS Pathog 2009 ; 5 : e1000287. [CrossRef] [PubMed] [Google Scholar]
  43. Li S, Zhu X, Guan Z, et al. NSs Filament formation is important but not sufficient for RVFV virulence in vivo. Viruses 2019 ; 11 : 834. [CrossRef] [Google Scholar]
  44. Erickson KD, Bouchet-Marquis C, Heiser K, et al. Virion assembly factories in the nucleus of polyomavirus-infected cells. PLoS Pathog 2012 ; 8 : e1002630. [CrossRef] [PubMed] [Google Scholar]
  45. McIntosh PB, Martin SR, Jackson DJ, et al. Structural analysis reveals an amyloid form of the human papillomavirus type 16 E1–E4 protein and provides a molecular basis for its accumulation. J Virol 2008 ; 82 : 8196–8203. [CrossRef] [PubMed] [Google Scholar]
  46. Pham CL, Shanmugam N, Strange M, et al. Viral M45 and necroptosis-associated proteins form heteromeric amyloid assemblies. EMBO Rep 2019 ; 20 : e46518. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.