m/s / COVID-19
Open Access
Issue
Med Sci (Paris)
Volume 37, Number 4, Avril 2021
m/s / COVID-19
Page(s) 333 - 341
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2021021
Published online 09 April 2021
  1. Fisher D, Heymann D. Q&A: The novel coronavirus outbreak causing COVID-19. BMC Med 2020; 18 : 57. [Google Scholar]
  2. Ziegler CGK, Allon SJ, Nyquist SK, et al. SARS-CoV-2 Receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell 2020; 181 : 1016–35.e19. [Google Scholar]
  3. Hadjadj J, Yatim N, Barnabei L, et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 2020; 369 : 718–24. [Google Scholar]
  4. Zhang Q, Bastard P, Liu Z, et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science 2020; 370 : eabd4570. [Google Scholar]
  5. Lee JS, Shin EC. The type I interferon response in COVID-19: implications for treatment. Nat Rev Immunol 2020; 20 : 585–6. [Google Scholar]
  6. Zhou Y, Fu B, Zheng X, et al. Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients. Natl Sci Rev 2020; 7 : 998–1002. [Google Scholar]
  7. Giamarellos-Bourboulis EJ, Netea MG, Rovina N, et al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe 2020; 27 : 992–1000.e3. [Google Scholar]
  8. Kang S, Tanaka T, Inoue H, et al. IL-6 trans-signaling induces plasminogen activator inhibitor-1 from vascular endothelial cells in cytokine release syndrome. Proc Natl Acad Sci USA 2020; 117 : 22351–6. [Google Scholar]
  9. Lucas C, Wong P, Klein J, et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature 2020; 584 : 463–9. [Google Scholar]
  10. RECOVERY Collaborative Group; Horby P, Lim WS, Emberson JR, et al. Dexamethasone in hospitalized patients with Covid-19 - Preliminary report. N Engl J Med 2020; NEJMoa2021436. [Google Scholar]
  11. Guaraldi G, Meschiari M, Cozzi-Lepri A, et al. Tocilizumab in patients with severe COVID-19: a retrospective cohort study. Lancet Rheumatol 2020; 2 : e474–e484. [Google Scholar]
  12. Stone JH, Frigault MJ, Serling-Boyd NJ, et al. Efficacy of tocilizumab in patients hospitalized with Covid-19. N Engl J Med 2020; 383 : 2333–44. [Google Scholar]
  13. Hermine O, Mariette X, Tharaux P-L, et al. Effect of tocilizumab vs usual care in adults hospitalized with COVID-19 and moderate or severe pneumonia: a randomized clinical trial. JAMA Intern Med 2021; 181 : 32–40. [Google Scholar]
  14. Salama C, Han J, Yau L, et al. Tocilizumab in patients hospitalized with Covid-19 pneumonia. N Engl J Med 2021; 384 : 20–30. [Google Scholar]
  15. Roche provides an update on the phase III COVACTA trial of Actemra/RoActemra in hospitalised patients with severe COVID-19 associated pneumonia. https://www.roche.com/investors/updates/inv-update-2020-07-29.htm. [Google Scholar]
  16. Mehta P, Cron RQ, Hartwell J, et al. Silencing the cytokine storm: the use of intravenous anakinra in haemophagocytic lymphohistiocytosis or macrophage activation syndrome. Lancet Rheumatol 2020; 2 : e358–e367. [Google Scholar]
  17. Hamming I, Timens W, Bulthuis MLC, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 2004 ; 203 : 631–637. [Google Scholar]
  18. Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med 2020; 383 : 120–8. [Google Scholar]
  19. The Lille COVID-19 ICU and Anatomopathology Group, Copin MC, Parmentier E, et al. Time to consider histologic pattern of lung injury to treat critically ill patients with COVID-19 infection. Intensive Care Med 2020; 46 : 1124–6. [Google Scholar]
  20. Magro C, Mulvey JJ, Berlin D, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl Res 2020; 220 : 1–13. [Google Scholar]
  21. Llitjos JF, Leclerc M, Chochois C, et al. High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients. J Thromb Haemost 2020; 18 : 1743–6. [Google Scholar]
  22. Daugan M, Noe R, Fridman WH, et al. Le système du complément - Une épée à double tranchant dans la progression tumorale. Med Sci (Paris) 2017 ; 33 : 871–877. [EDP Sciences] [Google Scholar]
  23. Gao T, Hu M, Zhang X, et al. Highly pathogenic coronavirus N protein aggravates lung injury by MASP-2-mediated complement over-activation. medRxiv 2020.03.29.20041962; doi: https://doi.org/10.1101/2020.03.29.20041962. [Google Scholar]
  24. Yu J, Yuan X, Chen H, et al. Direct activation of the alternative complement pathway by SARS-CoV-2 spike proteins is blocked by factor D inhibition. Blood 2020; 136 : 2080–9. [Google Scholar]
  25. Gralinski LE, Sheahan TP, Morrison TE, et al. Complement activation contributes to severe acute respiratory syndrome coronavirus pathogenesis. mBio 2018; 9 : e01753–18. [Google Scholar]
  26. Manthey HD, Woodruff TM, Taylor SM, et al. Complement component 5a (C5a). Int J Biochem Cell Biol 2009 ; 41 : 2114–2117. [Google Scholar]
  27. Bosmann M, Ward PA. Role of C3, C5 and anaphylatoxin receptors in acute lung injury and in sepsis. In: Lambris JD, Hajishengallis G, eds. Current topics in innate immunity II. advances in experimental medicine and biology. New York, NY : Springer, 2012 : 147–59. [Google Scholar]
  28. Zhang T, Garstka MA, Li K. The controversial c5a receptor C5aR2: its role in health and disease. J Immunol Res 2017 ; 2017 : e8193932. [Google Scholar]
  29. Mastellos DC, Pires da Silva BGP, Fonseca BAL, et al. Complement C3 vs C5 inhibition in severe COVID-19: early clinical findings reveal differential biological efficacy. Clin Immunol 2020; 220 : 108598. [Google Scholar]
  30. Carvelli J, Demaria O, Vély F, et al. Association of COVID-19 inflammation with activation of the C5a–C5aR1 axis. Nature 2020; 588 : 146–50. [Google Scholar]
  31. Eriksson O, Hultström M, Persson B, et al. Mannose-binding lectin is associated with thrombosis and coagulopathy in critically ill COVID-19 patients. Thromb Haemost 2020; 120 : 1720–4. [Google Scholar]
  32. Kenawy HI, Boral I, Bevington A. Complement-coagulation cross-talk: a potential mediator of the physiological activation of complement by low pH. Front Immunol 2015 ; 6 : 215. [Google Scholar]
  33. Ueda Y, Mohammed I, Song D, et al. Murine systemic thrombophilia and hemolytic uremic syndrome from a factor H point mutation. Blood 2017 ; 129 : 1184–1196. [Google Scholar]
  34. Middleton EA, He X-Y, Denorme F, et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood 2020; 136 : 1169–79. [Google Scholar]
  35. Ritis K, Doumas M, Mastellos D, et al. A novel C5a receptor-tissue factor cross-talk in neutrophils links innate immunity to coagulation pathways. J Immunol 2006 ; 177 : 4794–4802. [Google Scholar]
  36. Mastaglio S, Ruggeri A, Risitano AM, et al. The first case of COVID-19 treated with the complement C3 inhibitor AMY-101. Clin Immunol 2020; 215 : 108450. [Google Scholar]
  37. Diurno F, Numis FG, Porta G, et al. Eculizumab treatment in patients with COVID-19: preliminary results from real life ASL Napoli 2 Nord experience. Eur Rev Med Pharmacol Sci 2020; 24 : 4040–7. [Google Scholar]
  38. Mastellos DC, Ricklin D, Lambris JD. Clinical promise of next-generation complement therapeutics. Nat Rev Drug Discov 2019 ; 18 : 707–729. [Google Scholar]
  39. Ueda Y, Miwa T, Ito D, et al. Differential contribution of C5aR and C5b–9 pathways to renal thrombic microangiopathy and macrovascular thrombosis in mice carrying an atypical hemolytic syndrome-related factor H mutation. Kidney Int 2019 ; 96 : 67–79. [Google Scholar]
  40. Rother RP, Rollins SA, Mojcik CF, et al. Discovery and development of the complement inhibitor eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria. Nat Biotechnol 2007 ; 25 : 1256–1264. [Google Scholar]
  41. Morgan BP, Harris CL. Complement, a target for therapy in inflammatory and degenerative diseases. Nat Rev Drug Discov 2015 ; 14 : 857–877. [Google Scholar]
  42. Zuber J, Fakhouri F, Roumenina LT, et al. Use of eculizumab for atypical haemolytic uraemic syndrome and C3 glomerulopathies. Nat Rev Nephrol 2012 ; 8 : 643–657. [Google Scholar]
  43. Annane D, Heming N, Grimaldi-Bensouda L, et al. Eculizumab as an emergency treatment for adult patients with severe COVID-19 in the intensive care unit: a proof-of-concept study. EClinicalMedicine 2020; 100590. [Google Scholar]
  44. Covid-19 roundup: Alexion’s C5 inhibitor ultomiris misses the PhIII bar; Lonza in waiting game to use ingredients in Moderna vaccine. https://endpts.com/covid-19-roundup-alexions-c5-inhibitor-ultomiris-misses-the-phiii-bar/. [Google Scholar]
  45. Latuszek A, Liu Y, Olsen O, et al. Inhibition of complement pathway activation with pozelimab, a fully human antibody to complement component C5. PLoS One 2020; 15 : e0231892. [Google Scholar]
  46. Jordan SC, Kucher K, Bagger M, et al. Intravenous immunoglobulin significantly reduces exposure of concomitantly administered anti-C5 monoclonal antibody tesidolumab. Am J Transplant 2020; 20 : 2581–8. [Google Scholar]
  47. Röth A, Nishimura JI, Nagy Z, et al. The complement C5 inhibitor crovalimab in paroxysmal nocturnal hemoglobinuria. Blood 2020; 135 : 912–20. [Google Scholar]
  48. Chow V, Pan J, Chien D, et al. A randomized, double-blind, single-dose, three-arm, parallel group study to determine pharmacokinetic similarity of ABP 959 and eculizumab (Soliris®) in healthy male subjects. Eur J Haematol 2020; 105 : 66–74. [Google Scholar]
  49. Guo RF, Ward PA. Role of C5a in inflammatory responses. Annu Rev Immunol 2005 ; 23 : 821–852. [Google Scholar]
  50. Hammerschmidt D, Hudson L, Weaver LJ. et al. Association of complement activation and elevated plasma-C5a with adult respiratory distress syndrome: pathophysiological relevance and possible prognostic value. Lancet 1980 ; 315 : 947–949. [Google Scholar]
  51. Efficacy and safety study of BDB-001 in severe COVID-19 with ALI/ARDS. https://clinicaltrials.gov/ct2/show/NCT04449588. [Google Scholar]
  52. Vlaar APJ, de Bruin S, Busch M, et al. Anti-C5a antibody IFX-1 (vilobelimab) treatment versus best supportive care for patients with severe COVID-19 (PANAMO): an exploratory, open-label, phase 2 randomised controlled trial. Lancet Rheumatol 2020; 2 : e764–e73. [Google Scholar]
  53. Lu JD, Milakovic M, Ortega-Loayza AG, et al. Pyoderma gangrenosum: proposed pathogenesis and current use of biologics with an emphasis on complement C5a inhibitor IFX-1. Expert Opin Investig Drugs 2020; 29 : 1179–85. [Google Scholar]
  54. Gerard NP, Lu B, Liu P, et al. An Anti-inflammatory function for the complement anaphylatoxin C5a-binding protein, C5L2. J Biol Chem 2005 ; 280 : 39677–39680. [Google Scholar]
  55. Ram Kumar Pandian S, Arunachalam S, Deepak V, et al. Targeting complement cascade: an alternative strategy for COVID-19. 3 Biotech 2020; 10 : 479. [Google Scholar]
  56. Cavaillon JM, Sansonetti P, Goldman M. Jules Bordet, un homme de convictionCentenaire de l’attribution de son prix Nobel. Med Sci (Paris) 2020; 36 : 803–9. [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.