Open Access
Med Sci (Paris)
Volume 37, Number 4, Avril 2021
Page(s) 342 - 348
Section M/S Revues
Published online 28 April 2021
  1. O’Neill LAJ, Kishton RJ, Rathmell J. A guide to immunometabolism for immunologists. Nat Rev Immunol 2016 ; 16 : 553–565. [CrossRef] [PubMed] [Google Scholar]
  2. Si-Tahar M, Touqui L, Chignard M. Innate immunity and inflammation–two facets of the same anti-infectious reaction. Clin Exp Immunol 2009 ; 156 : 194–198. [CrossRef] [PubMed] [Google Scholar]
  3. Li Z, Quan G, Jiang X, et al. Effects of metabolites derived from gut microbiota and hosts on pathogens. Front Cell Infect Microbiol 2018 ; 8 : 314. [CrossRef] [PubMed] [Google Scholar]
  4. Luan HH, Medzhitov R. Food fight: role of itaconate and other metabolites in antimicrobial defense. Cell Metab 2016 ; 24 : 379–387. [CrossRef] [PubMed] [Google Scholar]
  5. McNelis JC, Olefsky JM. Macrophages, immunity, and metabolic disease. Immunity 2014 ; 41 : 36–48. [CrossRef] [PubMed] [Google Scholar]
  6. Ayres JS. Immunometabolism of infections. Nat Rev Immunol 2020; 20 : 79–80. [CrossRef] [PubMed] [Google Scholar]
  7. Grolla AA, Travelli C, Genazzani AA, et al. Extracellular nicotinamide phosphoribosyltransferase, a new cancer metabokine. Br J Pharmacol 2016 ; 173 : 2182–2194. [CrossRef] [PubMed] [Google Scholar]
  8. Krawczyk CM, Holowka T, Sun J, et al. Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood 2010 ; 115 : 4742–4749. [CrossRef] [PubMed] [Google Scholar]
  9. Dorneles GP, Dos Passos AAZ, Romão PRT, et al. New insights about regulatory t cells distribution and function with exercise: the role of immunometabolism. Curr Pharm Des 2020; 26 : 979–90. [CrossRef] [PubMed] [Google Scholar]
  10. McElvaney OJ, McEvoy N, McElvaney OF, et al. Characterization of the inflammatory response to severe COVID-19 illness. Am J Respir Crit Care Med 2020; 202 : 812–21. [CrossRef] [PubMed] [Google Scholar]
  11. Rodríguez-Prados JC, Través PG, Cuenca J, et al. Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J Immunol 2010 ; 185 : 605–614. [CrossRef] [PubMed] [Google Scholar]
  12. Van den Bossche J, Baardman J, de Winther MPJ. Metabolic characterization of polarized m1 and m2 bone marrow-derived macrophages using real-time extracellular flux analysis. J Vis Exp 2015 ; 105 : 53424. [Google Scholar]
  13. Palsson-McDermott EM, O’Neill LAJ. The Warburg effect then and now: from cancer to inflammatory diseases. BioEssays 2013 ; 35 : 965–973. [CrossRef] [PubMed] [Google Scholar]
  14. Van den Bossche J, O’Neill LA, Menon D. Macrophage immunometabolism: where are we (going)?. Trends Immunol 2017 ; 38 : 395–406. [CrossRef] [PubMed] [Google Scholar]
  15. Jha AK, Huang SCC, Sergushichev A, et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 2015 ; 42 : 419–430. [CrossRef] [PubMed] [Google Scholar]
  16. Lampropoulou V, Sergushichev A, Bambouskova M, et al. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab 2016 ; 24 : 158–166. [CrossRef] [PubMed] [Google Scholar]
  17. Guillon A, Arafa EI, Barker KA, et al. Pneumonia recovery reprograms the alveolar macrophage pool. JCI Insight 2020; 5 : e133042. [Google Scholar]
  18. Zhang Y, Zhang Y, Sun K, et al. The SLC transporter in nutrient and metabolic sensing, regulation, and drug development. J Mol Cell Biol 2018 ; 11 : 1–13. [Google Scholar]
  19. Soto-Heredero G, Gómez de Las Heras MM, Gabandé-Rodríguez E, et al. Glycolysis - a key player in the inflammatory response. FEBS J 2020; 287 : 3350–69. [CrossRef] [PubMed] [Google Scholar]
  20. Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell 2017 ; 168 : 960–976. [CrossRef] [PubMed] [Google Scholar]
  21. Linke M, Fritsch SD, Sukhbaatar N, et al. mTORC1 and mTORC2 as regulators of cell metabolism in immunity. FEBS Lett 2017 ; 591 : 3089–3103. [CrossRef] [PubMed] [Google Scholar]
  22. Sinclair LV, Rolf J, Emslie E, et al. Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat Immunol 2013 ; 14 : 500–508. [CrossRef] [PubMed] [Google Scholar]
  23. Klysz D, Tai X, Robert PA, et al. Glutamine-dependent α-ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation. Sci Signal 2015; 8 : ra97. [CrossRef] [PubMed] [Google Scholar]
  24. Tannahill G, Curtis A, Adamik J, et al. Succinate is a danger signal that induces IL-1β via HIF-1α. Nature 2013 ; 496 : 238–242. [CrossRef] [PubMed] [Google Scholar]
  25. Littlewood-Evans A, Sarret S, Apfel V, et al. GPR91 senses extracellular succinate released from inflammatory macrophages and exacerbates rheumatoid arthritis. J Exp Med 2016 ; 213 : 1655–1662. [CrossRef] [PubMed] [Google Scholar]
  26. Zhang Q, Cao X. Epigenetic regulation of the innate immune response to infection. Nat Rev Immunol 2019 ; 19 : 417–432. [CrossRef] [PubMed] [Google Scholar]
  27. Domínguez-Andrés J, Joosten LA, Netea MG. Induction of innate immune memory: the role of cellular metabolism. Curr Opin Immunol 2019 ; 56 : 10–16. [CrossRef] [PubMed] [Google Scholar]
  28. Balmer ML, Ma EH, Bantug GR, et al. Memory CD8+ T cells require increased concentrations of acetate induced by stress for optimal function. Immunity 2016 ; 44 : 1312–1324. [CrossRef] [PubMed] [Google Scholar]
  29. Mills EL, Ryan DG, Prag HA, et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 2018 ; 556 : 113–117. [CrossRef] [PubMed] [Google Scholar]
  30. Furuse Y.. Analysis of research intensity on infectious disease by disease burden reveals which infectious diseases are neglected by researchers. Proc Natl Acad Sci USA 2019 ; 116 : 478–483. [Google Scholar]
  31. Mathers C. Global burden of disease. In: International Encyclopedia of Public Health. New York : Elsevier, 2017 : 256–67. [Google Scholar]
  32. Naujoks J, Tabeling C, Dill BD, et al. IFNs Modify the proteome of Legionella-containing vacuoles and restrict infection via IRG1-derived itaconic acid. PLoS Pathog 2016 ; 12 : e1005408. [CrossRef] [PubMed] [Google Scholar]
  33. Nguyen TV, Alfaro AC, Young T, et al. Itaconic acid inhibits growth of a pathogenic marine vibrio strain: a metabolomics approach. Sci Rep 2019 ; 9 : 5937. [CrossRef] [PubMed] [Google Scholar]
  34. Cheah HL, Lim V, Sandai D. Inhibitors of the glyoxylate cycle enzyme ICL1 in Candida albicans for potential use as antifungal agents. PLoS One 2014 ; 9 : e95951. [CrossRef] [PubMed] [Google Scholar]
  35. Peng B, Su Y, Li H, et al. Exogenous alanine and/or glucose plus kanamycin kills antibiotic-resistant bacteria. Cell Metabol 2015 ; 21 : 249–262. [Google Scholar]
  36. Fisher RA, Gollan B, Helaine S. Persistent bacterial infections and persister cells. Nat Rev Microbiol 2017 ; 15 : 453–464. [CrossRef] [PubMed] [Google Scholar]
  37. Crabbé A, Ostyn L, Staelens S, et al. Host metabolites stimulate the bacterial proton motive force to enhance the activity of aminoglycoside antibiotics. PLoS Pathog 2019 ; 15 : e1007697. [CrossRef] [PubMed] [Google Scholar]
  38. Allison KR, Brynildsen MP, Collins JJ. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature 2011 ; 473 : 216–220. [CrossRef] [PubMed] [Google Scholar]
  39. Daniels BP, Kofman SB, Smith JR, et al. The nucleotide sensor ZBP1 and kinase RIPK3 induce the enzyme IRG1 to promote an antiviral metabolic state in neurons. Immunity 2019 ; 50 : 64–76. [CrossRef] [PubMed] [Google Scholar]
  40. de Almeida GMF, Silva LCF, Colson P, et al. Mimiviruses and the human interferon system: viral evasion of classical antiviral activities, but inhibition by a novel interferon-β regulated immunomodulatory pathway. J Interferon Cytokine Res 2017 ; 37 : 1–8. [CrossRef] [PubMed] [Google Scholar]
  41. Sethy B, Hsieh CF, Lin TJ, et al. Design, synthesis, and biological evaluation of itaconic acid derivatives as potential anti-influenza agents. J Med Chem 2019 ; 62 : 2390–2403. [CrossRef] [PubMed] [Google Scholar]
  42. Kim CH. Immune regulation by microbiome metabolites. Immunology 2018 ; 154 : 220–229. [CrossRef] [PubMed] [Google Scholar]
  43. Libertucci J, Young VB. The role of the microbiota in infectious diseases. Nat Microbiol 2019 ; 4 : 35–45. [CrossRef] [PubMed] [Google Scholar]
  44. Razungles J, Cavaillès V, Jalaguier S, Teyssier C. L’effet Warburg : de la théorie du cancer aux applications thérapeutiques en cancérologie. Med Sci (Paris) 2013 ; 29 : 1026–1033. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  45. Julien LA, Roux PP. mTOR, la cible fonctionnelle de la rapamycine. Med Sci (Paris) 2010; 26 :1056–60. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  46. Torre C. Laure Tsoumtsa L, Ghigo E. La mémoire immunitaire entraînée chez les invertébrés : que sait-on ?. Med Sci (Paris) 2017 ; 33 : 979–983. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.