Open Access
Issue
Med Sci (Paris)
Volume 37, Number 4, Avril 2021
Page(s) 349 - 358
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2021037
Published online 28 April 2021
  1. Poss KD. Advances in understanding tissue regenerative capacity and mechanisms in animals. Nat Rev Genet 2010 ; 11 : 710–722. [Google Scholar]
  2. Vervoort M.. Regeneration and development in animals. Biological Theory 2011 ; 6 : 25–35. [Google Scholar]
  3. Chen CH, Poss KD. Regeneration genetics. Annu Rev Genet 2017 ; 51 : 63–82. [Google Scholar]
  4. Tiozzo S, Copley RR. Reconsidering regeneration in metazoans: an evo-devo approach. Front Ecol Evol 2015; 3. doi: 10.3389/fevo.2015.00067. [Google Scholar]
  5. Amiel AR, Johnston HT, Nedoncelle K, et al. Characterization of morphological and cellular events underlying oral regeneration in the sea anemone. Nematostella vectensis. Int J Mol Sci 2015 ; 16 : 28449–28471. [Google Scholar]
  6. Planques A, Malem J, Parapar J, et al. Morphological, cellular and molecular characterization of posterior regeneration in the marine annelid Platynereis dumerilii. Dev Biol 2019 ; 445 : 189–210. [Google Scholar]
  7. Ramon-Mateu J, Ellison ST, Angelini TE, Martindale MQ. Regeneration in the ctenophore Mnemiopsis leidyi occurs in the absence of a blastema, requires cell division, and is temporally separable from wound healing. BMC Biol 2019 ; 17 : 80. [Google Scholar]
  8. Amiel AR, Foucher K, Ferreira S, Röttinger E. Synergic coordination of stem cells is required to induce a regenerative response in anthozoan cnidarians. BioRxiv 2019. doi. https://doi:org/10.1101/2019.12.31.891804. [Google Scholar]
  9. McIlwain DR, Berger T, Mak TW. Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol 2013 ; 5 : a008656. [Google Scholar]
  10. Saunders JW, Fallon JF. Cell death in morphogenesis. In : Locke M, ed. Major problems in developmental biology. New Yok : Academic Press, 1966 : 289–314. [Google Scholar]
  11. Vriz S, Reiter S, Galliot B. Cell death: a program to regenerate. Curr Top Dev Biol 2014 ; 108 : 121–151. [Google Scholar]
  12. Krasovec G, Robine K, Queinnec E, et al. Ci-hox12 tail gradient precedes and participates in the control of the apoptotic-dependent tail regression during Ciona larva metamorphosis. Dev Biol 2019 ; 448 : 237–246. [Google Scholar]
  13. Bardet PL, Kolahgar G, Mynett A, et al. A fluorescent reporter of caspase activity for live imaging. Proc Natl Acad Sci USA 2008 ; 105 : 13901–13905. [Google Scholar]
  14. Ding Y, Li J, Enterina JR, et al. Ratiometric biosensors based on dimerization-dependent fluorescent protein exchange. Nat Methods 2015 ; 12 : 195–198. [Google Scholar]
  15. Chera S, Ghila L, Dobretz K, et al. Apoptotic cells provide an unexpected source of Wnt3 signaling to drive hydra head regeneration. Dev Cell 2009 ; 17 : 279–289. [Google Scholar]
  16. Warner JF, Amiel A, Johnston H, Rottinger E. Regeneration is a partial redeployment of the embryonic gene network. BioRxiv 2019. doi: https://doi.org/10.1101/658930. [Google Scholar]
  17. Gauron C, Rampon C, Bouzaffour M, et al. Sustained production of ROS triggers compensatory proliferation and is required for regeneration to proceed. Sci Rep 2013 ; 3 : 2084. [Google Scholar]
  18. Milan M, Campuzano S, Garcia-Bellido A. Developmental parameters of cell death in the wing disc of Drosophila. Proc Natl Acad Sci USA 1997 ; 94 : 5691–5696. [Google Scholar]
  19. Perez-Garijo A, Steller H. Spreading the word: non-autonomous effects of apoptosis during development, regeneration and disease. Development 2015 ; 142 : 3253–3262. [Google Scholar]
  20. Fan Y, Bergmann A. Apoptosis-induced compensatory proliferation. The cell is dead. long live the cell!. Trends Cell Biol 2008 ; 18 : 467–473. [Google Scholar]
  21. Godwin JW, Pinto AR, Rosenthal NA. Macrophages are required for adult salamander limb regeneration. Proc Natl Acad Sci USA 2013 ; 110 : 9415–9420. [Google Scholar]
  22. Ricci L, Srivastava M. Wound-induced cell proliferation during animal regeneration. Wiley Interdiscip Rev Dev Biol 2018 e321. [Google Scholar]
  23. Wiese KE, Nusse R, van Amerongen R. Wnt signalling: conquering complexity. Development 2018 ; 145 : dev165902. [Google Scholar]
  24. Brock CK, Wallin ST, Ruiz OE, et al. Stem cell proliferation is induced by apoptotic bodies from dying cells during epithelial tissue maintenance. Nat Commun 2019 ; 10 : 1044. [Google Scholar]
  25. Medina CB, Mehrotra P, Arandjelovic S, et al. Metabolites released from apoptotic cells act as tissue messengers. Nature 2020; 580 : 130–5. [Google Scholar]
  26. Rampon C, Gauron C, Meda F, et al. Adenosine enhances progenitor cell recruitment and nerve growth via its A2B receptor during adult fin regeneration. Purinergic Signal 2014 ; 10 : 595–602. [Google Scholar]
  27. Reczek CR, Chandel NS. ROS-dependent signal transduction. Curr Opin Cell Biol 2015 ; 33 : 8–13. [Google Scholar]
  28. Love NR, Chen Y, Ishibashi S, et al. Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration. Nat Cell Biol 2013 ; 15 : 222–228. [Google Scholar]
  29. Fogarty CE, Diwanji N, Lindblad JL, et al. Extracellular reactive oxygen species drive apoptosis-induced proliferation via Drosophila macrophages. Curr Biol 2016 ; 26 : 575–584. [Google Scholar]
  30. Belousov VV, Fradkov AF, Lukyanov KA, et al. Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat Methods 2006 ; 3 : 281–286. [Google Scholar]
  31. Hanson GT, Aggeler R, Oglesbee D, et al. Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J Biol Chem 2004 ; 279 : 13044–13053. [Google Scholar]
  32. Al Haj Baddar NW Chithrala A, Voss SR. Amputation-induced reactive oxygen species signaling is required for axolotl tail regeneration. Dev Dyn 2019 ; 248 : 189–196. [Google Scholar]
  33. Cordeiro JV, Jacinto A. The role of transcription-independent damage signals in the initiation of epithelial wound healing. Nat Rev Mol Cell Biol 2013 ; 14 : 249–262. [Google Scholar]
  34. Buchon N, Broderick NA, Lemaitre B. Gut homeostasis in a microbial world: insights from Drosophila melanogaster. Nat Rev Microbiol 2013 ; 11 : 615–626. [Google Scholar]
  35. Mao AS, Mooney DJ. Regenerative medicine: current therapies and future directions. Proc Natl Acad Sci USA 2015 ; 112 : 14452–14459. [Google Scholar]
  36. Bely AE, Nyberg KG. Evolution of animal regeneration: re-emergence of a field. Trends Ecol Evol 2010 ; 25 : 161–170. [Google Scholar]
  37. Bergmann A, Steller H. Apoptosis, stem cells, and tissue regeneration. Sci Signal 2010; 3 : re8. [Google Scholar]
  38. Galluzzi L, Vitale I, Abrams JM, et al. Molecular definitions of cell death subroutines: recommendations of the nomenclature committee on cell death 2012. Cell Death Differ 2012 ; 19 : 107–120. [Google Scholar]
  39. Coffman JA, Su YH. Redox regulation of development and regeneration. Curr Opin Genet Dev 2019 ; 57 : 9–15. [Google Scholar]
  40. Staunton CA, Owen ED, Pollock N, et al. HyPer2 imaging reveals temporal and heterogeneous hydrogen peroxide changes in denervated and aged skeletal muscle fibers in vivo. Sci Rep 2019 ; 9 : 14461. [Google Scholar]
  41. Zou Y, Wang A, Shi M, et al. Analysis of redox landscapes and dynamics in living cells and in vivo using genetically encoded fluorescent sensors. Nat Protoc 2018 ; 13 : 2362–2386. [Google Scholar]
  42. Gutscher M, Sobotta MC, Wabnitz GH, et al. Proximity-based protein thiol oxidation by H2O2-scavenging peroxidases. J Biol Chem 2009 ; 284 : 31532–31540. [Google Scholar]
  43. Vieillissement et mort : de la cellule à l’individu. Med Sci (Paris) 2020; 36 : 1103–238. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.