Open Access
Issue
Med Sci (Paris)
Volume 37, Number 4, Avril 2021
Page(s) 359 - 365
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2021032
Published online 28 April 2021
  1. Bankir L, Bichet DG, Morgenthaler NG. Vasopressin: physiology, assessment and osmosensation. J Int Med 2017 ; 282 : 284–297. [Google Scholar]
  2. Machnik A, Neuhofer W, Jantsch J, et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat Med 2009 ; 15 : 545–552. [CrossRef] [PubMed] [Google Scholar]
  3. Cowley AW, Jr, Roman RJ. Control of blood and extracellular volume. Bailliere’s Clinical Endocrinology and Metabolism 1989 ; 3 : 331–369. [Google Scholar]
  4. Nielsen R, Christensen EI, Birn H. Megalin and cubilin in proximal tubule protein reabsorption: from experimental models to human disease. Kidney Int 2016 ; 89 : 58–67. [CrossRef] [PubMed] [Google Scholar]
  5. Feraille E, Doucet A. Sodium-potassium-adenosinetriphosphatase-dependent sodium transport in the kidney: hormonal control. Physiol Rev 2001 ; 81 : 345–418. [CrossRef] [PubMed] [Google Scholar]
  6. Curthoys NP, Moe OW. Proximal tubule function and response to acidosis. Clin J Am Soc Nephrol 2014 ; 9 : 1627–1638. [CrossRef] [PubMed] [Google Scholar]
  7. Yu ASL. Claudins and the kidney. J Am Soc Nephrol 2015 ; 26 : 11–19. [CrossRef] [PubMed] [Google Scholar]
  8. Sands JM, Layton HE. Advances in understanding the urine-concentrating mechanism. Ann Rev Physiol 2014 ; 76 : 387–409. [Google Scholar]
  9. Mount DB. Thick ascending limb of the loop of Henle. Clin J Am Soc Nephrol 2014 ; 9 : 1974–1986. [CrossRef] [PubMed] [Google Scholar]
  10. Hou J, Renigunta A, Konrad M, et al. Claudin-16 and claudin-19 interact and form a cation-selective tight junction complex. J Clin Invest 2008 ; 118 : 619–628. [PubMed] [Google Scholar]
  11. Breiderhoff T, Himmerkus N, Stuiver M, et al. Deletion of claudin-10 (Cldn10) in the thick ascending limb impairs paracellular sodium permeability and leads to hypermagnesemia and nephrocalcinosis. Proc Natl Acad Sci USA 2012 ; 109 : 14241–14246. [Google Scholar]
  12. Milatz S, Himmerkus N, Wulfmeyer VC, et al. Mosaic expression of claudins in thick ascending limbs of Henle results in spatial separation of paracellular Na+ and Mg2+ transport. Proc Natl Acad Sci USA 2017 ; 114 : E219–E227. [Google Scholar]
  13. Simon DB, Lifton RP. Ion transporter mutations in Gitelman’s and Bartter’s syndromes. Curr Op Nephrol Hypertens 1998 ; 7 : 43–47. [Google Scholar]
  14. Bongers EM, Shelton LM, Milatz S, et al. A novel hypokaliemic-alkalotic salt loosing tubulopathy in patients with CLDN10 mutations. J Am Soc Nephrol 2017 ; 28 : 3118–3128. [CrossRef] [PubMed] [Google Scholar]
  15. Hasj-Rabia S, Brideau G, Al-Sarraj Y, el al. Multiplex epithelium dysfunction due to CLDN10 mutation: the HELIX syndrome. Genet Med 2019; 20 : 190–201. [Google Scholar]
  16. Poulsen SB, Fenton RA. K+ and the renin-angiotensin-aldosterone system: new insights into their role in blood pressure control and hypertension treatment. J Physiol 2019 ; 597 : 4451–4464. [CrossRef] [PubMed] [Google Scholar]
  17. Staruschenko A. Regulation of transport in the connecting tubule and cortical collecting duct. Comp Physiol 2012 ; 2 : 1541–1584. [Google Scholar]
  18. Roy A, Al-bataineh MM, Pastor-Soler NM. Collecting duct intercalated cell function and regulation. Clin J Am Soc Nephrol 2015 ; 10 : 305–324. [CrossRef] [PubMed] [Google Scholar]
  19. Pollak MR, Quaggin SE, Hoenig MP, et al. The glomerulus: the sphere of influence. Clin J Am Soc Nephrol 2014 ; 9 : 1461–1469. [CrossRef] [PubMed] [Google Scholar]
  20. Bauersachs J, Jaisser F, Toto R. Mineralocorticoid receptor activation and mineralocorticoid receptor antagonist treatment in cardiac and renal diseases. Hypertension 2015 ; 65 : 257–263. [CrossRef] [PubMed] [Google Scholar]
  21. Fakitsas P, Adam G, Daidie D, et al. Early Aldosterone-Induced gene product regulates the epithelial sodium channel by deubiquitylation. J Am Soc Nephrol 2007 ; 18 : 1084–1092. [CrossRef] [PubMed] [Google Scholar]
  22. Rotin D, Staub O. Nedd4-2 and the regulation of epithelial sodium transport. Front Physiol 2012 ; 3 : 212. [CrossRef] [PubMed] [Google Scholar]
  23. Kellenberger S, Gautschi I, Rossier BC, et al. Mutations causing Liddle syndrome reduce sodium-dependent downregulation of the epithelial sodium channel in the Xenopus oocyte expression system. J Clin Invest 1998 ; 101 : 2741–2750. [CrossRef] [PubMed] [Google Scholar]
  24. May A, Puoti A, Gaeggeler HP, et al. Early effect of aldosterone on the rate of synthesis of the epithelial sodium channel alpha subunit in A6 renal cells. J Am Soc Nephrol 1997 ; 8 : 1813–1822. [CrossRef] [PubMed] [Google Scholar]
  25. Yu Z, Kong Q, Kone BC. Aldosterone reprograms promoter methylation to regulate αENaC transcription in the collecting cuct. Am J Physiol Renal Physiol 2013 ; 305 : F1006–F1013. [CrossRef] [PubMed] [Google Scholar]
  26. Wang YB, Leroy V, Maunsbach AB, et al. Sodium transport is modulated by p38 kinase-dependent cross-talk between ENaC and Na, K-ATPase in collecting duct principal cells. J Am Soc Nephrol 2014 ; 25 : 250–259. [CrossRef] [PubMed] [Google Scholar]
  27. Horisberger JD, Rossier BC. Aldosterone regulation of gene transcription leading to control of ion transport. Hypertension 1992 ; 19 : 221–227. [CrossRef] [PubMed] [Google Scholar]
  28. Wang WH, Yue P, Sun P, et al. Regulation and function of potassium channels in aldosterone-sensitive distal nephron. Curr Op Nephrol Hypertens 2010 ; 19 : 463–470. [Google Scholar]
  29. Terker AS, Yarbrough B, Ferdaus MZ, et al. Direct and indirect mineralocorticoid effects determine distal salt transport. J Am Soc Nephrol 2016 ; 27 : 2436–2445. [CrossRef] [PubMed] [Google Scholar]
  30. Terker AS, Zhang C, McCormick JA, et al. Potassium modulates electrolyte balance and blood pressure through effects on distal cell voltage and chloride. Cell Metab 2015 ; 21 : 39–50. [CrossRef] [PubMed] [Google Scholar]
  31. Doucet A, Favre G, Deschênes G. Molecular mechanism of edema formation in nephrotic syndrome: therapeutic implications. Pediatric Nephrol 2007 ; 22 : 1983–1990. [Google Scholar]
  32. Ichikawa I, Rennke HG, Hoyer JR, et al. Role for intrarenal mechanisms in the impaired salt excretion of experimental nephrotic syndrome. J Clin Invest 1983 ; 71 : 91–103. [CrossRef] [PubMed] [Google Scholar]
  33. Deschenes G, Doucet A, Collecting duct (Na+/K+)-ATPase activity is correlated with urinary sodium excretion in rat nephrotic syndromes. J Am Soc Nephrol 2000 ; 11 : 604–615. [CrossRef] [PubMed] [Google Scholar]
  34. Lourdel S, Loffing J, Favre G, et al. Hyperaldosteronemia and activation of the epithelial sodium channel are not required for sodium retention in puromycin-induced nephrosis. J Am Soc Nephrol 2005 ; 16 : 3642–3650. [CrossRef] [PubMed] [Google Scholar]
  35. Vogt B, Favre H. Na+, K+-ATPase activity and hormones in single nephron segments from nephrotic rats. Clin Sci 1991 ; 80 : 599–604. [Google Scholar]
  36. Apostol E, Ecelbarber CA, Terris J, et al. Reduced renal medullary water channel expression in puromycin aminonucleoside-induced nephrotic syndrome. J Am Soc Nephrol 1997 ; 8 : 15–24. [CrossRef] [PubMed] [Google Scholar]
  37. Rutkowski JM, Wang ZV, Park ASD, et al. Adiponectin promotes functional recovery after podocyte ablation. J Am Soc Nephrol 2013 ; 24 : 268–282. [CrossRef] [PubMed] [Google Scholar]
  38. Dizin E, Olivier V, Maire C, et al. Time-course of sodium transport along the nephron in nephrotic syndrome: The role of potassium. FASEB J 2020; 34 : 2408–24. [CrossRef] [PubMed] [Google Scholar]
  39. Fila M, Brideau G, Morla L, et al. Inhibition of K+ secretion in the distal nephron in nephrotic syndrome: possible role of albuminuria. J Physiol 2011 ; 589 : 3611–3621. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.