Open Access
Issue |
Med Sci (Paris)
Volume 37, Number 4, Avril 2021
|
|
---|---|---|
Page(s) | 366 - 371 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2021035 | |
Published online | 28 April 2021 |
- Boehm U, Bouloux PM, Dattani MT, et al. Expert consensus document: European consensus statement on congenital hypogonadotropic hypogonadism–pathogenesis, diagnosis and treatment. Nat Rev Endocrinol 2015 ; 11 : 547–564. [CrossRef] [PubMed] [Google Scholar]
- Howard SR, Dunkel L. Delayed puberty-phenotypic diversity, molecular genetic mechanisms, and recent discoveries. Endocr Rev 2019 ; 40 : 1285–1317. [CrossRef] [PubMed] [Google Scholar]
- Parent AS, Teilmann G, Juul A, et al. The timing of normal puberty and the age limits of sexual precocity: variations around the world, secular trends, and changes after migration. Endocr Rev 2003 ; 24 : 668–693. [CrossRef] [PubMed] [Google Scholar]
- Schwanzel-Fukuda M, Pfaff DW. Origin of luteinizing hormone-releasing hormone neurons. Nature 1989 ; 338 : 161–164. [CrossRef] [PubMed] [Google Scholar]
- Wray S, Grant P, Gainer H. Evidence that cells expressing luteinizing hormone-releasing hormone mRNA in the mouse are derived from progenitor cells in the olfactory placode. Proc Natl Acad Sci USA 1989 ; 86 : 8132–8136. [Google Scholar]
- Giacobini P.. Shaping the reproductive system: role of semaphorins in gonadotropin-releasing hormone development and function. Neuroendocrinology 2015 ; 102 : 200–215. [CrossRef] [PubMed] [Google Scholar]
- Imai T, Yamazaki T, Kobayakawa R, et al. Pre-target axon sorting establishes the neural map topography. Science 2009 ; 325 : 585–590. [CrossRef] [PubMed] [Google Scholar]
- Casoni F, Malone SA, Belle M, et al. Development of the neurons controlling fertility in humans: new insights from 3D imaging and transparent fetal brains. Development 2016 ; 143 : 3969–3981. [CrossRef] [PubMed] [Google Scholar]
- Vanacker C, Trova S, Shruti S, et al. Neuropilin-1 expression in GnRH neurons regulates prepubertal weight gain and sexual attraction. EMBO J 2020; 39 : e104633. [CrossRef] [PubMed] [Google Scholar]
- Hanchate NK, Giacobini P, Lhuillier P, et al. SEMA3A, a Gene involved in axonal pathfinding, is mutated in patients with Kallmann syndrome. PLoS Genet 2012 ; 8 : e1002896. [CrossRef] [PubMed] [Google Scholar]
- Marcos S, Monnier C, Rovira X, et al. Defective signaling through plexin-A1 compromises the development of the peripheral olfactory system and neuroendocrine reproductive axis in mice. Hum Mol Genet 2017 ; 26 : 2006–2017. [CrossRef] [PubMed] [Google Scholar]
- Kotan LD, Ternier G, Cakir AD, et al. Loss-of-function mutations in sema3f and plxna3 encoding semaphorin-3F and its receptor Plexin-A3 respectively cause idiopathic hypogonadotropic hypogonadism. Genet Med 2021. doi: 10.1038/s41436-020-01087-5. [PubMed] [Google Scholar]
- Van der Klaauw AA, Croizier S, Mendes de Oliveira E, et al. Human semaphorin 3 variants link melanocortin circuit development and energy balance. Cell 2019; 176 : 729–42e18. [CrossRef] [PubMed] [Google Scholar]
- Wehner AB, Abdesselem H, Dickendesher TL, et al. Semaphorin 3A is a retrograde cell death signal in developing sympathetic neurons. Development 2016 ; 143 : 1560–1570. [CrossRef] [PubMed] [Google Scholar]
- Orr BO, Fetter RD, Davis GW. Retrograde semaphorin-plexin signalling drives homeostatic synaptic plasticity. Nature 2017 ; 550 : 109–113. [CrossRef] [PubMed] [Google Scholar]
- Howard SR, Guasti L, Ruiz-Babot G, et al. IGSF10 mutations dysregulate gonadotropin-releasing hormone neuronal migration resulting in delayed puberty. EMBO Mol Med 2016 ; 8 : 626–642. [CrossRef] [PubMed] [Google Scholar]
- Abreu AP, Dauber A, Macedo DB, et al. Central precocious puberty caused by mutations in the imprinted gene MKRN3. N Engl J Med 2013 ; 368 : 2467–2475. [CrossRef] [PubMed] [Google Scholar]
- Abreu AP, Toro CA, Song YB, et al. MKRN3 inhibits the reproductive axis through actions in kisspeptin-expressing neurons. J Clin Invest 2020; 130 : 4486–500. [PubMed] [Google Scholar]
- Heras V, Sangiao-Alvarellos S, Manfredi-Lozano M, et al. Hypothalamic miR-30 regulates puberty onset via repression of the puberty-suppressing factor, Mkrn3. PLoS Biol 2019 ; 17 : e3000532. [CrossRef] [PubMed] [Google Scholar]
- Dauber A, Cunha-Silva M, Macedo DB, et al. Paternally inherited DLK1 deletion associated with familial central precocious puberty. J Clin Endocrinol Metab 2017 ; 102 : 1557–1567. [CrossRef] [PubMed] [Google Scholar]
- Silveira LG, Noel SD, Silveira-Neto AP, et al. Mutations of the KISS1 gene in disorders of puberty. J Clin Endocrinol Metab 2010 ; 95 : 2276–2280. [CrossRef] [PubMed] [Google Scholar]
- Teles MG, Bianco SD, Brito VN, et al. A GPR54-activating mutation in a patient with central precocious puberty. N Engl J Med 2008 ; 358 : 709–715. [CrossRef] [PubMed] [Google Scholar]
- Ahmed ML, Ong KK, Morrell DJ, et al. Longitudinal study of leptin concentrations during puberty: sex differences and relationship to changes in body composition. J Clin Endocrinol Metab 1999 ; 84 : 899–905. [PubMed] [Google Scholar]
- Prevot V. Puberty in mice and rats. In : Plant TM, Zeleznik J, eds. Knobil and Neill’s physiology of reproduction. New York: Elsevier, 2015 : 1395–1439. [Google Scholar]
- Tena-Sempere M. Physiological mechanisms for the metabolic control of reproduction. In : Plant TM, Zeleznik J Knobil and Neill’s physiology of reproduction. New York: Elsevier, 2015: 1605–1636. [Google Scholar]
- He Q, Karlberg J. Bmi in childhood and its association with height gain, timing of puberty, and final height. Pediatr Res 2001 ; 49 : 244–251. [CrossRef] [PubMed] [Google Scholar]
- McKinney TD, Desjardins C. Postnatal development of the testis, fighting behavior, and fertility in house mice. Biol Reprod 1973 ; 9 : 279–294. [CrossRef] [PubMed] [Google Scholar]
- Hess RA, Renato de Franca L. Spermatogenesis and cycle of the seminiferpus epithelium. In: Cheng CY, ed. Molecular mechanisms in spermatogenesis. New York : Springer-Verlag, 2008 : 1–15. [Google Scholar]
- McGee SR, Narayan P. Precocious puberty and Leydig cell hyperplasia in male mice with a gain of function mutation in the LH receptor gene. Endocrinology 2013 ; 154 : 3900–3913. [CrossRef] [PubMed] [Google Scholar]
- Giger RJ, Wolfer DP, De Wit GM, Verhaagen J. Anatomy of rat semaphorin III/collapsin-1 mRNA expression and relationship to developing nerve tracts during neuroembryogenesis. J Comp Neurol 1996 ; 375 : 378–392. [CrossRef] [PubMed] [Google Scholar]
- Dluzen DE, Ramirez VD, Carter CS, Getz LL. Male vole urine changes luteinizing hormone-releasing hormone and norepinephrine in female olfactory bulb. Science 1981 ; 212 : 573–575. [CrossRef] [PubMed] [Google Scholar]
- Boehm U, Zou Z, Buck LB. Feedback loops link odor and pheromone signaling with reproduction. Cell 2005 ; 123 : 683–695. [CrossRef] [PubMed] [Google Scholar]
- Hellier V, Brock O, Candlish M, et al. Female sexual behavior in mice is controlled by kisspeptin neurons. Nat Commun 2018 ; 9 : 400. [CrossRef] [PubMed] [Google Scholar]
- Messina A, Langlet F, Chachlaki K, et al. A microRNA switch regulates the rise in hypothalamic GnRH production before puberty. Nat Neurosci 2016 ; 19 : 835–844. [CrossRef] [PubMed] [Google Scholar]
- Oboti L, Trova S, Schellino R, et al. Activity dependent modulation of granule cell survival in the accessory olfactory bulb at puberty. Front Neuroanat 2017 ; 11 : 44. [CrossRef] [PubMed] [Google Scholar]
- Golub MS, Collman GW, Foster PM, et al. Public health implications of altered puberty timing. Pediatrics 2008 ; 121(suppl 3): S218–S230. [CrossRef] [PubMed] [Google Scholar]
- Comninos AN, Dhillo WS. Emerging roles of kisspeptin in sexual and emotional brain processing. Neuroendocrinology 2018 ; 106 : 195–202. [CrossRef] [PubMed] [Google Scholar]
- Ferrero DM, Moeller LM, Osakada T, et al. A juvenile mouse pheromone inhibits sexual behaviour through the vomeronasal system. Nature 2013 ; 502 : 368–371. [CrossRef] [PubMed] [Google Scholar]
- Gelstein S, Yeshurun Y, Rozenkrantz L, et al. Human tears contain a chemosignal. Science 2011 ; 331 : 226–230. [CrossRef] [PubMed] [Google Scholar]
- He Z, Tessier-Lavigne M. Neuropilin is a receptor for the axonal chemorepellent Semaphorin III. Cell 1997 ; 90 : 739–751. [CrossRef] [PubMed] [Google Scholar]
- Kolodkin AL, Levengood DV, Rowe EG, et al. Neuropilin is a semaphorin III receptor. Cell 1997 ; 90 : 753–762. [CrossRef] [PubMed] [Google Scholar]
- Tamagnone L, Artigiani S, Chen H, et al. Plexins are a large family of receptors for transmembrane, secreted, and GPI-anchored semaphorins in vertebrates. Cell 1999 ; 99 : 71–80. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.