Open Access
Med Sci (Paris)
Volume 37, Number 4, Avril 2021
Page(s) 372 - 378
Section M/S Revues
Published online 28 April 2021
  1. Sabatini DM. Twenty-five years of mTOR: uncovering the link from nutrients to growth. Proc Natl Acad Sci USA 2017 ; 114 : 11818–11825. [Google Scholar]
  2. Kim DH, Sarbassov DD, Ali SM, et al. GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell 2003 ; 11 : 895–904. [CrossRef] [PubMed] [Google Scholar]
  3. Sancak Y, Bar-Peled L, Zoncu R, et al. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010 ; 141 : 290–303. [CrossRef] [PubMed] [Google Scholar]
  4. Kim DH, Sarbassov DD, Ali SM, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002 ; 110 : 163–175. [CrossRef] [PubMed] [Google Scholar]
  5. Nicastro R, Sardu A, Panchaud N, De Virgilio C. The architecture of the Rag GTPase signaling network. Biomolecules 2017 ; 7 : 48. [Google Scholar]
  6. Cherfils J, Zeghouf M. Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev 2013 ; 93 : 269–309. [CrossRef] [PubMed] [Google Scholar]
  7. Bar-Peled L, Schweitzer LD, Zoncu R, Sabatini DM. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 2012 ; 150 : 1196–1208. [CrossRef] [PubMed] [Google Scholar]
  8. Bar-Peled L, Chantranupong L, Cherniack AD, et al. A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 2013 ; 340 : 1100–1106. [CrossRef] [PubMed] [Google Scholar]
  9. Tsun ZY, Bar-Peled L, Chantranupong L, et al. The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Mol Cell 2013 ; 52 : 495–505. [CrossRef] [PubMed] [Google Scholar]
  10. Yang H, Jiang X, Li B, et al. Mechanisms of mTORC1 activation by RHEB and inhibition by PRAS40. Nature 2017 ; 552 : 368–373. [CrossRef] [PubMed] [Google Scholar]
  11. Shen K, Huang RK, Brignole EJ, et al. Architecture of the human GATOR1 and GATOR1-Rag GTPases complexes. Nature 2018 ; 556 : 64–69. [CrossRef] [PubMed] [Google Scholar]
  12. Rogala KB, Gu X, Kedir JF, et al. Structural basis for the docking of mTORC1 on the lysosomal surface. Science 2019 ; 366 : 468–475. [CrossRef] [PubMed] [Google Scholar]
  13. Shen K, Rogala KB, Chou HT, et al. Cryo-EM Structure of the human FLCN-FNIP2-Rag-Ragulator complex. Cell 2019; 179 : 1319–29e8. [CrossRef] [PubMed] [Google Scholar]
  14. Anandapadamanaban M, Masson GR, Perisic O, et al. Architecture of human Rag GTPase heterodimers and their complex with mTORC1. Science 2019 ; 366 : 203–210. [CrossRef] [PubMed] [Google Scholar]
  15. Lawrence RE, Fromm SA, Fu Y, et al. Structural mechanism of a Rag GTPase activation checkpoint by the lysosomal folliculin complex. Science 2019 ; 366 : 971–977. [CrossRef] [PubMed] [Google Scholar]
  16. Fromm SA, Lawrence RE, Hurley JH. Structural mechanism for amino acid-dependent Rag GTPase nucleotide state switching by SLC38A9. Nat Struct Mol Biol 2020; 27 : 1017–20. [CrossRef] [PubMed] [Google Scholar]
  17. Klinger CM, Spang A, Dacks JB, Ettema TJ. Tracing the archaeal origins of eukaryotic membrane-trafficking system building blocks. Mol Biol Evol 2016 ; 33 : 1528–1541. [CrossRef] [PubMed] [Google Scholar]
  18. Cherfils J. Encoding Allostery in mTOR Signaling: The Structure of the Rag GTPase/Ragulator Complex. Mol Cell 2017 ; 68 : 823–824. [CrossRef] [PubMed] [Google Scholar]
  19. Pasqualato S, Renault L, Cherfils J. Arf, Arl, Arp and Sar proteins: a family of GTP-binding proteins with a structural device for front-back communication. EMBO Rep 2002 ; 3 : 1035–1041. [CrossRef] [PubMed] [Google Scholar]
  20. Su MY, Morris KL, Kim DJ, et al. Hybrid structure of the RagA/C-Ragulator mTORC1 activation complex. Mol Cell 2017; 68 : 835–46e3. [CrossRef] [PubMed] [Google Scholar]
  21. Shen K, Sabatini DM. Ragulator and SLC38A9 activate the Rag GTPases through noncanonical GEF mechanisms. Proc Natl Acad Sci USA 2018 ; 115 : 9545–9550. [Google Scholar]
  22. de Araujo MEG, Naschberger A, Furnrohr BG, et al. Crystal structure of the human lysosomal mTORC1 scaffold complex and its impact on signaling. Science 2017 ; 358 : 377–381. [CrossRef] [PubMed] [Google Scholar]
  23. Shen K, Valenstein ML, Gu X, Sabatini DM. Arg-78 of Nprl2 catalyzes GATOR1-stimulated GTP hydrolysis by the Rag GTPases. J Biol Chem 2019 ; 294 : 2970–2975. [CrossRef] [PubMed] [Google Scholar]
  24. Tesmer JJ, Berman DM, Gilman AG, Sprang SR. Structure of RGS4 bound to AlF4–activated G(i alpha1): stabilization of the transition state for GTP hydrolysis. Cell 1997 ; 89 : 251–261. [CrossRef] [PubMed] [Google Scholar]
  25. Galicia C, Lhospice S, Varela PF, et al. MglA functions as a three-state GTPase to control movement reversals of Myxococcus xanthus. Nat Commun 2019 ; 10 : 5300. [CrossRef] [PubMed] [Google Scholar]
  26. Yang H, Rudge DG, Koos JD, et al. mTOR kinase structure, mechanism and regulation. Nature 2013 ; 497 : 217–223. [CrossRef] [PubMed] [Google Scholar]
  27. Peurois F, Peyroche G, Cherfils J. Small GTPase peripheral binding to membranes: molecular determinants and supramolecular organization. Biochem Soc Trans 2019 ; 47 : 13–22. [CrossRef] [PubMed] [Google Scholar]
  28. Kovacs E, Zorn JA, Huang Y, et al. A structural perspective on the regulation of the epidermal growth factor receptor. Annu Rev Biochem 2015 ; 84 : 739–764. [CrossRef] [PubMed] [Google Scholar]
  29. Kondo Y, Ognjenovic J, Banerjee S, et al. Cryo-EM structure of a dimeric B-Raf:14-3-3 complex reveals asymmetry in the active sites of B-Raf kinases. Science 2019 ; 366 : 109–115. [CrossRef] [PubMed] [Google Scholar]
  30. Das S, Malaby AW, Nawrotek A, et al. Structural organization and dynamics of homodimeric cytohesin family Arf GTPase exchange factors in solution and on membranes. Structure 2019; 27 : 1782–97e7. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.