Open Access
Issue
Med Sci (Paris)
Volume 37, Number 4, Avril 2021
Page(s) 379 - 385
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2021034
Published online 28 April 2021
  1. HendersonR. The potential and limitations of neutrons, electrons and x-rays for atomic resolution microscopy of unstained biological molecules. Q Rev Biophys 1995 ; 28 : 171–193. [CrossRef] [PubMed] [Google Scholar]
  2. Dubochet J, Adrian M, Chang J, et al. Cryo-electron microscopy of vitrified specimens. Q Rev Biophys 1988 ; 21 : 129–128. [CrossRef] [PubMed] [Google Scholar]
  3. Frank J. Single-particle imaging of macromolecules by cryo-electron microscopy. Annu Rev Biophys Biomol Struct 2002 ; 31 : 303–319. [CrossRef] [PubMed] [Google Scholar]
  4. Wan W, Briggs JAG Cryo-Electron tomography and subtomogram averaging. Methods Enzymol 2016 ; 279 : 329–367. [Google Scholar]
  5. Cheng Y, Grigorieff N, Penczek PA, et al. A primer to single-particle cryo-electron microscopy. Cell 2015 ; 161 : 439–449. [Google Scholar]
  6. Beck M, Baumeister W Cryo-electron tomography: can it reveal the molecular sociology of cells in atomic detail?. Trends Cell Biol 2016 ; 26 : 825–837. [CrossRef] [PubMed] [Google Scholar]
  7. Hutchings J, Stancheva V, Miller EA, et al. Subtomogram averaging of COPII assemblies reveals how coat organization dictates membrane shape. Nat Commun 2018 ; 9 : 4154. [CrossRef] [PubMed] [Google Scholar]
  8. Bertin A, Franceschi N de, la Mora E de, et al. Human ESCRT-III polymers assemble on positively curved membranes and induce helical membrane tube formation. Nat Commun 2020; 11 : 2663. [CrossRef] [PubMed] [Google Scholar]
  9. Guichard P, Hamel V, Le Guennec M, et al. Cell-free reconstitution reveals centriole cartwheel assembly mechanisms. Nat Commun 2017 ; 8 : 1–9. [CrossRef] [Google Scholar]
  10. Schaffer M, Pfeffer S, Mahamid J, et al. A cryo-FIB lift-out technique enables molecular-resolution cryo-ET within native Caenorhabditis elegans tissue. Nat Methods 2019 ; 16 : 757–762. [CrossRef] [PubMed] [Google Scholar]
  11. Mahamid J, Pfeffer S, Schaffer M, et al. Visualizing the molecular sociology at the HeLa cell nuclear periphery. Science 2016 ; 351 : 969–972. [CrossRef] [PubMed] [Google Scholar]
  12. Delarue M, Brittingham GP, Pfeffer S, et al. mTORC1 controls phase separation and the biophysical properties of the cytoplasm by tuning crowding. Cell 2018 ; 174 : 338–49e20. [Google Scholar]
  13. Vignaud T, Copos C, Leterrier C, et al. Stress fibres are embedded in a contractile cortical network. Nat Mater 2020; 20 : 410–20. [CrossRef] [PubMed] [Google Scholar]
  14. Noble AJ, Dandey VP, Wei H, et al. Routine single particle CryoEM sample and grid characterization by tomography. Elife 2018; 7 e34257. [CrossRef] [PubMed] [Google Scholar]
  15. Wu M, Lander GC. Present and emerging methodologies in cryo-em single-particle analysis. Biophys J 2020; 119 : 1281–9. [CrossRef] [PubMed] [Google Scholar]
  16. Polovinkin L, Hassaine G, Perot J, et al. Conformational transitions of the serotonin 5-HT3 receptor. Nature 2018 ; 563 : 275–279. [CrossRef] [PubMed] [Google Scholar]
  17. Kumar A, Planchais C, Fronzes R, et al. Binding mechanisms of therapeutic antibodies to human CD20. Science 2020; 369 : 793–9. [CrossRef] [PubMed] [Google Scholar]
  18. Zhang W, Tarutani A, Newell KL, et al. Novel tau filament fold in corticobasal degeneration. Nature 2020; 580 : 283–7. [CrossRef] [PubMed] [Google Scholar]
  19. Weiss GL, Stanisich JJ, Sauer MM, et al. Architecture and function of human uromodulin filaments in urinary tract infections. Science 2020; 369 : 1005–10. [CrossRef] [PubMed] [Google Scholar]
  20. Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020; 367 : 1260–3. [Google Scholar]
  21. Yan R, Zhang Y, Li Y, et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 2020; 367 : 1444–8. [Google Scholar]
  22. Yin W, Mao C, Luan X, et al. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science 2020; 368 : 1499–504. [CrossRef] [PubMed] [Google Scholar]
  23. Lv Z, Deng YQ, Ye Q, et al. Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody. Science 2020; 369 : 1505–9. [CrossRef] [PubMed] [Google Scholar]
  24. Ke Z, Oton J, Qu K, et al. Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature 2020; 588 : 498–502. [CrossRef] [PubMed] [Google Scholar]
  25. Yao H, Song Y, Chen Y, et al. Molecular architecture of the SARS-CoV-2 virus. Cell 2020; 183 : 730–8.e13. [CrossRef] [PubMed] [Google Scholar]
  26. Klein S, Cortese M, Winter SL, et al. SARS-CoV-2 structure and replication characterized by in situ cryo-electron tomography. Nat Commun 2020; 11 : 5885. [CrossRef] [PubMed] [Google Scholar]
  27. Moser F, Pražák V, Mordhorst V, et al. Cryo-SOFI enabling low-dose super-resolution correlative light and electron cryo-microscopy. Proc Natl Acad Sci USA 2019 ; 116 : 4804–4809. [Google Scholar]
  28. Cuniasse P, Tavares P, Orlova E V, et al. Structures of biomolecular complexes by combination of NMR and cryoEM methods. Curr Opin Struct Biol 2017 ; 43 : 104–113. [CrossRef] [PubMed] [Google Scholar]
  29. Earnest TM, Watanabe R, Stone JE, et al. Challenges of integrating stochastic dynamics and cryo-electron tomograms in whole-cell simulations. J Phys Chem B 2017 ; 121 : 3871–3881. [CrossRef] [PubMed] [Google Scholar]
  30. Dandey VP, Budell WC, Wei H, et al. Time-resolved cryo-EM using spotiton. Nat Methods 2020; 17 : 897–900. [CrossRef] [PubMed] [Google Scholar]
  31. Toro-Nahuelpan M, Zagoriy I, Senger F, et al. Tailoring cryo-electron microscopy grids by photo-micropatterning for in-cell structural studies. bioRxiv 2019; 676189. [Google Scholar]
  32. Schwartz O, Axelrod JJ, Campbell SL, et al. Laser phase plate for transmission electron microscopy. Nat Methods 2019 ; 16 : 1016–1020. [CrossRef] [PubMed] [Google Scholar]
  33. Herzik MA, Wu M, Lander GC Achieving better-than-3-Å resolution by single-particle cryo-EM at 200 keV. Nat Methods 2017 ; 14 : 1075–1078. [CrossRef] [PubMed] [Google Scholar]
  34. Naydenova K, McMullan G, Peet MJ, et al. CryoEM at 100keV: a demonstration and prospects. IUCrJ 2019 ; 6 : 1086–1098. [CrossRef] [PubMed] [Google Scholar]
  35. Baldwin PR, Tan YZ, Eng ET, et al. Big data in cryoEM: automated collection, processing and accessibility of EM data. Curr Opin Microbiol 2018 ; 43 : 1–8. [CrossRef] [PubMed] [Google Scholar]
  36. Galaz-Montoya JG, Ludtke SJ The advent of structural biology in situ by single particle cryo-electron tomography. Biophys Reports 2017 ; 3 : 17–35. [Google Scholar]
  37. De la Mora E, Dezi M, Di Cicco A, et al. Nanoscale architecture of a VAP-A-OSBP tethering complex at membrane contact site. bioRxiv 2020; 10.13.337493. https://doi.org/10.1101/2020.10.13.337493. [Google Scholar]
  38. Neumann E, Farias Estrozi L, Effantin G, et al. Prix Nobel de Chimie 2017: Jacques Dubochet, Joachim Frank et Richard Henderson.La révolution de la résolution en cryo-microscopie électronique. Med Sci (Paris) 2017 ; 33 : 1111–1117. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  39. Lafaurie-Janvore J, Piel M Mécanique et division cellulaire : contrôle temporel de l’abscission. Med Sci (Paris) 2013 ; 29 : 1089–1091. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.