Open Access
Numéro |
Med Sci (Paris)
Volume 37, Numéro 4, Avril 2021
|
|
---|---|---|
Page(s) | 379 - 385 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2021034 | |
Publié en ligne | 28 avril 2021 |
- HendersonR. The potential and limitations of neutrons, electrons and x-rays for atomic resolution microscopy of unstained biological molecules. Q Rev Biophys 1995 ; 28 : 171–193. [CrossRef] [PubMed] [Google Scholar]
- Dubochet J, Adrian M, Chang J, et al. Cryo-electron microscopy of vitrified specimens. Q Rev Biophys 1988 ; 21 : 129–128. [CrossRef] [PubMed] [Google Scholar]
- Frank J. Single-particle imaging of macromolecules by cryo-electron microscopy. Annu Rev Biophys Biomol Struct 2002 ; 31 : 303–319. [CrossRef] [PubMed] [Google Scholar]
- Wan W, Briggs JAG Cryo-Electron tomography and subtomogram averaging. Methods Enzymol 2016 ; 279 : 329–367. [Google Scholar]
- Cheng Y, Grigorieff N, Penczek PA, et al. A primer to single-particle cryo-electron microscopy. Cell 2015 ; 161 : 439–449. [Google Scholar]
- Beck M, Baumeister W Cryo-electron tomography: can it reveal the molecular sociology of cells in atomic detail?. Trends Cell Biol 2016 ; 26 : 825–837. [CrossRef] [PubMed] [Google Scholar]
- Hutchings J, Stancheva V, Miller EA, et al. Subtomogram averaging of COPII assemblies reveals how coat organization dictates membrane shape. Nat Commun 2018 ; 9 : 4154. [CrossRef] [PubMed] [Google Scholar]
- Bertin A, Franceschi N de, la Mora E de, et al. Human ESCRT-III polymers assemble on positively curved membranes and induce helical membrane tube formation. Nat Commun 2020; 11 : 2663. [CrossRef] [PubMed] [Google Scholar]
- Guichard P, Hamel V, Le Guennec M, et al. Cell-free reconstitution reveals centriole cartwheel assembly mechanisms. Nat Commun 2017 ; 8 : 1–9. [CrossRef] [Google Scholar]
- Schaffer M, Pfeffer S, Mahamid J, et al. A cryo-FIB lift-out technique enables molecular-resolution cryo-ET within native Caenorhabditis elegans tissue. Nat Methods 2019 ; 16 : 757–762. [CrossRef] [PubMed] [Google Scholar]
- Mahamid J, Pfeffer S, Schaffer M, et al. Visualizing the molecular sociology at the HeLa cell nuclear periphery. Science 2016 ; 351 : 969–972. [CrossRef] [PubMed] [Google Scholar]
- Delarue M, Brittingham GP, Pfeffer S, et al. mTORC1 controls phase separation and the biophysical properties of the cytoplasm by tuning crowding. Cell 2018 ; 174 : 338–49e20. [Google Scholar]
- Vignaud T, Copos C, Leterrier C, et al. Stress fibres are embedded in a contractile cortical network. Nat Mater 2020; 20 : 410–20. [CrossRef] [PubMed] [Google Scholar]
- Noble AJ, Dandey VP, Wei H, et al. Routine single particle CryoEM sample and grid characterization by tomography. Elife 2018; 7 e34257. [CrossRef] [PubMed] [Google Scholar]
- Wu M, Lander GC. Present and emerging methodologies in cryo-em single-particle analysis. Biophys J 2020; 119 : 1281–9. [CrossRef] [PubMed] [Google Scholar]
- Polovinkin L, Hassaine G, Perot J, et al. Conformational transitions of the serotonin 5-HT3 receptor. Nature 2018 ; 563 : 275–279. [CrossRef] [PubMed] [Google Scholar]
- Kumar A, Planchais C, Fronzes R, et al. Binding mechanisms of therapeutic antibodies to human CD20. Science 2020; 369 : 793–9. [CrossRef] [PubMed] [Google Scholar]
- Zhang W, Tarutani A, Newell KL, et al. Novel tau filament fold in corticobasal degeneration. Nature 2020; 580 : 283–7. [CrossRef] [PubMed] [Google Scholar]
- Weiss GL, Stanisich JJ, Sauer MM, et al. Architecture and function of human uromodulin filaments in urinary tract infections. Science 2020; 369 : 1005–10. [CrossRef] [PubMed] [Google Scholar]
- Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020; 367 : 1260–3. [Google Scholar]
- Yan R, Zhang Y, Li Y, et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 2020; 367 : 1444–8. [Google Scholar]
- Yin W, Mao C, Luan X, et al. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science 2020; 368 : 1499–504. [CrossRef] [PubMed] [Google Scholar]
- Lv Z, Deng YQ, Ye Q, et al. Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody. Science 2020; 369 : 1505–9. [CrossRef] [PubMed] [Google Scholar]
- Ke Z, Oton J, Qu K, et al. Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature 2020; 588 : 498–502. [CrossRef] [PubMed] [Google Scholar]
- Yao H, Song Y, Chen Y, et al. Molecular architecture of the SARS-CoV-2 virus. Cell 2020; 183 : 730–8.e13. [CrossRef] [PubMed] [Google Scholar]
- Klein S, Cortese M, Winter SL, et al. SARS-CoV-2 structure and replication characterized by in situ cryo-electron tomography. Nat Commun 2020; 11 : 5885. [CrossRef] [PubMed] [Google Scholar]
- Moser F, Pražák V, Mordhorst V, et al. Cryo-SOFI enabling low-dose super-resolution correlative light and electron cryo-microscopy. Proc Natl Acad Sci USA 2019 ; 116 : 4804–4809. [Google Scholar]
- Cuniasse P, Tavares P, Orlova E V, et al. Structures of biomolecular complexes by combination of NMR and cryoEM methods. Curr Opin Struct Biol 2017 ; 43 : 104–113. [CrossRef] [PubMed] [Google Scholar]
- Earnest TM, Watanabe R, Stone JE, et al. Challenges of integrating stochastic dynamics and cryo-electron tomograms in whole-cell simulations. J Phys Chem B 2017 ; 121 : 3871–3881. [CrossRef] [PubMed] [Google Scholar]
- Dandey VP, Budell WC, Wei H, et al. Time-resolved cryo-EM using spotiton. Nat Methods 2020; 17 : 897–900. [CrossRef] [PubMed] [Google Scholar]
- Toro-Nahuelpan M, Zagoriy I, Senger F, et al. Tailoring cryo-electron microscopy grids by photo-micropatterning for in-cell structural studies. bioRxiv 2019; 676189. [Google Scholar]
- Schwartz O, Axelrod JJ, Campbell SL, et al. Laser phase plate for transmission electron microscopy. Nat Methods 2019 ; 16 : 1016–1020. [CrossRef] [PubMed] [Google Scholar]
- Herzik MA, Wu M, Lander GC Achieving better-than-3-Å resolution by single-particle cryo-EM at 200 keV. Nat Methods 2017 ; 14 : 1075–1078. [CrossRef] [PubMed] [Google Scholar]
- Naydenova K, McMullan G, Peet MJ, et al. CryoEM at 100keV: a demonstration and prospects. IUCrJ 2019 ; 6 : 1086–1098. [CrossRef] [PubMed] [Google Scholar]
- Baldwin PR, Tan YZ, Eng ET, et al. Big data in cryoEM: automated collection, processing and accessibility of EM data. Curr Opin Microbiol 2018 ; 43 : 1–8. [CrossRef] [PubMed] [Google Scholar]
- Galaz-Montoya JG, Ludtke SJ The advent of structural biology in situ by single particle cryo-electron tomography. Biophys Reports 2017 ; 3 : 17–35. [Google Scholar]
- De la Mora E, Dezi M, Di Cicco A, et al. Nanoscale architecture of a VAP-A-OSBP tethering complex at membrane contact site. bioRxiv 2020; 10.13.337493. https://doi.org/10.1101/2020.10.13.337493. [Google Scholar]
- Neumann E, Farias Estrozi L, Effantin G, et al. Prix Nobel de Chimie 2017: Jacques Dubochet, Joachim Frank et Richard Henderson.La révolution de la résolution en cryo-microscopie électronique. Med Sci (Paris) 2017 ; 33 : 1111–1117. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Lafaurie-Janvore J, Piel M Mécanique et division cellulaire : contrôle temporel de l’abscission. Med Sci (Paris) 2013 ; 29 : 1089–1091. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.