Open Access
Numéro
Med Sci (Paris)
Volume 37, Numéro 4, Avril 2021
Page(s) 372 - 378
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2021033
Publié en ligne 28 avril 2021
  1. Sabatini DM. Twenty-five years of mTOR: uncovering the link from nutrients to growth. Proc Natl Acad Sci USA 2017 ; 114 : 11818–11825. [Google Scholar]
  2. Kim DH, Sarbassov DD, Ali SM, et al. GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell 2003 ; 11 : 895–904. [CrossRef] [PubMed] [Google Scholar]
  3. Sancak Y, Bar-Peled L, Zoncu R, et al. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010 ; 141 : 290–303. [CrossRef] [PubMed] [Google Scholar]
  4. Kim DH, Sarbassov DD, Ali SM, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002 ; 110 : 163–175. [CrossRef] [PubMed] [Google Scholar]
  5. Nicastro R, Sardu A, Panchaud N, De Virgilio C. The architecture of the Rag GTPase signaling network. Biomolecules 2017 ; 7 : 48. [Google Scholar]
  6. Cherfils J, Zeghouf M. Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev 2013 ; 93 : 269–309. [CrossRef] [PubMed] [Google Scholar]
  7. Bar-Peled L, Schweitzer LD, Zoncu R, Sabatini DM. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 2012 ; 150 : 1196–1208. [CrossRef] [PubMed] [Google Scholar]
  8. Bar-Peled L, Chantranupong L, Cherniack AD, et al. A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 2013 ; 340 : 1100–1106. [CrossRef] [PubMed] [Google Scholar]
  9. Tsun ZY, Bar-Peled L, Chantranupong L, et al. The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Mol Cell 2013 ; 52 : 495–505. [CrossRef] [PubMed] [Google Scholar]
  10. Yang H, Jiang X, Li B, et al. Mechanisms of mTORC1 activation by RHEB and inhibition by PRAS40. Nature 2017 ; 552 : 368–373. [CrossRef] [PubMed] [Google Scholar]
  11. Shen K, Huang RK, Brignole EJ, et al. Architecture of the human GATOR1 and GATOR1-Rag GTPases complexes. Nature 2018 ; 556 : 64–69. [CrossRef] [PubMed] [Google Scholar]
  12. Rogala KB, Gu X, Kedir JF, et al. Structural basis for the docking of mTORC1 on the lysosomal surface. Science 2019 ; 366 : 468–475. [CrossRef] [PubMed] [Google Scholar]
  13. Shen K, Rogala KB, Chou HT, et al. Cryo-EM Structure of the human FLCN-FNIP2-Rag-Ragulator complex. Cell 2019; 179 : 1319–29e8. [CrossRef] [PubMed] [Google Scholar]
  14. Anandapadamanaban M, Masson GR, Perisic O, et al. Architecture of human Rag GTPase heterodimers and their complex with mTORC1. Science 2019 ; 366 : 203–210. [CrossRef] [PubMed] [Google Scholar]
  15. Lawrence RE, Fromm SA, Fu Y, et al. Structural mechanism of a Rag GTPase activation checkpoint by the lysosomal folliculin complex. Science 2019 ; 366 : 971–977. [CrossRef] [PubMed] [Google Scholar]
  16. Fromm SA, Lawrence RE, Hurley JH. Structural mechanism for amino acid-dependent Rag GTPase nucleotide state switching by SLC38A9. Nat Struct Mol Biol 2020; 27 : 1017–20. [CrossRef] [PubMed] [Google Scholar]
  17. Klinger CM, Spang A, Dacks JB, Ettema TJ. Tracing the archaeal origins of eukaryotic membrane-trafficking system building blocks. Mol Biol Evol 2016 ; 33 : 1528–1541. [CrossRef] [PubMed] [Google Scholar]
  18. Cherfils J. Encoding Allostery in mTOR Signaling: The Structure of the Rag GTPase/Ragulator Complex. Mol Cell 2017 ; 68 : 823–824. [CrossRef] [PubMed] [Google Scholar]
  19. Pasqualato S, Renault L, Cherfils J. Arf, Arl, Arp and Sar proteins: a family of GTP-binding proteins with a structural device for front-back communication. EMBO Rep 2002 ; 3 : 1035–1041. [CrossRef] [PubMed] [Google Scholar]
  20. Su MY, Morris KL, Kim DJ, et al. Hybrid structure of the RagA/C-Ragulator mTORC1 activation complex. Mol Cell 2017; 68 : 835–46e3. [CrossRef] [PubMed] [Google Scholar]
  21. Shen K, Sabatini DM. Ragulator and SLC38A9 activate the Rag GTPases through noncanonical GEF mechanisms. Proc Natl Acad Sci USA 2018 ; 115 : 9545–9550. [Google Scholar]
  22. de Araujo MEG, Naschberger A, Furnrohr BG, et al. Crystal structure of the human lysosomal mTORC1 scaffold complex and its impact on signaling. Science 2017 ; 358 : 377–381. [CrossRef] [PubMed] [Google Scholar]
  23. Shen K, Valenstein ML, Gu X, Sabatini DM. Arg-78 of Nprl2 catalyzes GATOR1-stimulated GTP hydrolysis by the Rag GTPases. J Biol Chem 2019 ; 294 : 2970–2975. [CrossRef] [PubMed] [Google Scholar]
  24. Tesmer JJ, Berman DM, Gilman AG, Sprang SR. Structure of RGS4 bound to AlF4–activated G(i alpha1): stabilization of the transition state for GTP hydrolysis. Cell 1997 ; 89 : 251–261. [CrossRef] [PubMed] [Google Scholar]
  25. Galicia C, Lhospice S, Varela PF, et al. MglA functions as a three-state GTPase to control movement reversals of Myxococcus xanthus. Nat Commun 2019 ; 10 : 5300. [CrossRef] [PubMed] [Google Scholar]
  26. Yang H, Rudge DG, Koos JD, et al. mTOR kinase structure, mechanism and regulation. Nature 2013 ; 497 : 217–223. [CrossRef] [PubMed] [Google Scholar]
  27. Peurois F, Peyroche G, Cherfils J. Small GTPase peripheral binding to membranes: molecular determinants and supramolecular organization. Biochem Soc Trans 2019 ; 47 : 13–22. [CrossRef] [PubMed] [Google Scholar]
  28. Kovacs E, Zorn JA, Huang Y, et al. A structural perspective on the regulation of the epidermal growth factor receptor. Annu Rev Biochem 2015 ; 84 : 739–764. [CrossRef] [PubMed] [Google Scholar]
  29. Kondo Y, Ognjenovic J, Banerjee S, et al. Cryo-EM structure of a dimeric B-Raf:14-3-3 complex reveals asymmetry in the active sites of B-Raf kinases. Science 2019 ; 366 : 109–115. [CrossRef] [PubMed] [Google Scholar]
  30. Das S, Malaby AW, Nawrotek A, et al. Structural organization and dynamics of homodimeric cytohesin family Arf GTPase exchange factors in solution and on membranes. Structure 2019; 27 : 1782–97e7. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.