m/s / COVID-19
Open Access
Numéro
Med Sci (Paris)
Volume 37, Numéro 4, Avril 2021
m/s / COVID-19
Page(s) 333 - 341
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2021021
Publié en ligne 9 avril 2021
  1. Fisher D, Heymann D. Q&A: The novel coronavirus outbreak causing COVID-19. BMC Med 2020; 18 : 57. [CrossRef] [PubMed] [Google Scholar]
  2. Ziegler CGK, Allon SJ, Nyquist SK, et al. SARS-CoV-2 Receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell 2020; 181 : 1016–35.e19. [CrossRef] [PubMed] [Google Scholar]
  3. Hadjadj J, Yatim N, Barnabei L, et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 2020; 369 : 718–24. [CrossRef] [PubMed] [Google Scholar]
  4. Zhang Q, Bastard P, Liu Z, et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science 2020; 370 : eabd4570. [CrossRef] [PubMed] [Google Scholar]
  5. Lee JS, Shin EC. The type I interferon response in COVID-19: implications for treatment. Nat Rev Immunol 2020; 20 : 585–6. [CrossRef] [PubMed] [Google Scholar]
  6. Zhou Y, Fu B, Zheng X, et al. Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients. Natl Sci Rev 2020; 7 : 998–1002. [Google Scholar]
  7. Giamarellos-Bourboulis EJ, Netea MG, Rovina N, et al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe 2020; 27 : 992–1000.e3. [CrossRef] [PubMed] [Google Scholar]
  8. Kang S, Tanaka T, Inoue H, et al. IL-6 trans-signaling induces plasminogen activator inhibitor-1 from vascular endothelial cells in cytokine release syndrome. Proc Natl Acad Sci USA 2020; 117 : 22351–6. [Google Scholar]
  9. Lucas C, Wong P, Klein J, et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature 2020; 584 : 463–9. [CrossRef] [PubMed] [Google Scholar]
  10. RECOVERY Collaborative Group; Horby P, Lim WS, Emberson JR, et al. Dexamethasone in hospitalized patients with Covid-19 - Preliminary report. N Engl J Med 2020; NEJMoa2021436. [Google Scholar]
  11. Guaraldi G, Meschiari M, Cozzi-Lepri A, et al. Tocilizumab in patients with severe COVID-19: a retrospective cohort study. Lancet Rheumatol 2020; 2 : e474–e484. [CrossRef] [PubMed] [Google Scholar]
  12. Stone JH, Frigault MJ, Serling-Boyd NJ, et al. Efficacy of tocilizumab in patients hospitalized with Covid-19. N Engl J Med 2020; 383 : 2333–44. [CrossRef] [PubMed] [Google Scholar]
  13. Hermine O, Mariette X, Tharaux P-L, et al. Effect of tocilizumab vs usual care in adults hospitalized with COVID-19 and moderate or severe pneumonia: a randomized clinical trial. JAMA Intern Med 2021; 181 : 32–40. [CrossRef] [PubMed] [Google Scholar]
  14. Salama C, Han J, Yau L, et al. Tocilizumab in patients hospitalized with Covid-19 pneumonia. N Engl J Med 2021; 384 : 20–30. [CrossRef] [PubMed] [Google Scholar]
  15. Roche provides an update on the phase III COVACTA trial of Actemra/RoActemra in hospitalised patients with severe COVID-19 associated pneumonia. https://www.roche.com/investors/updates/inv-update-2020-07-29.htm. [Google Scholar]
  16. Mehta P, Cron RQ, Hartwell J, et al. Silencing the cytokine storm: the use of intravenous anakinra in haemophagocytic lymphohistiocytosis or macrophage activation syndrome. Lancet Rheumatol 2020; 2 : e358–e367. [CrossRef] [PubMed] [Google Scholar]
  17. Hamming I, Timens W, Bulthuis MLC, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 2004 ; 203 : 631–637. [CrossRef] [PubMed] [Google Scholar]
  18. Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med 2020; 383 : 120–8. [CrossRef] [PubMed] [Google Scholar]
  19. The Lille COVID-19 ICU and Anatomopathology Group, Copin MC, Parmentier E, et al. Time to consider histologic pattern of lung injury to treat critically ill patients with COVID-19 infection. Intensive Care Med 2020; 46 : 1124–6. [CrossRef] [PubMed] [Google Scholar]
  20. Magro C, Mulvey JJ, Berlin D, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl Res 2020; 220 : 1–13. [CrossRef] [PubMed] [Google Scholar]
  21. Llitjos JF, Leclerc M, Chochois C, et al. High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients. J Thromb Haemost 2020; 18 : 1743–6. [CrossRef] [PubMed] [Google Scholar]
  22. Daugan M, Noe R, Fridman WH, et al. Le système du complément - Une épée à double tranchant dans la progression tumorale. Med Sci (Paris) 2017 ; 33 : 871–877. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  23. Gao T, Hu M, Zhang X, et al. Highly pathogenic coronavirus N protein aggravates lung injury by MASP-2-mediated complement over-activation. medRxiv 2020.03.29.20041962; doi: https://doi.org/10.1101/2020.03.29.20041962. [Google Scholar]
  24. Yu J, Yuan X, Chen H, et al. Direct activation of the alternative complement pathway by SARS-CoV-2 spike proteins is blocked by factor D inhibition. Blood 2020; 136 : 2080–9. [CrossRef] [PubMed] [Google Scholar]
  25. Gralinski LE, Sheahan TP, Morrison TE, et al. Complement activation contributes to severe acute respiratory syndrome coronavirus pathogenesis. mBio 2018; 9 : e01753–18. [CrossRef] [PubMed] [Google Scholar]
  26. Manthey HD, Woodruff TM, Taylor SM, et al. Complement component 5a (C5a). Int J Biochem Cell Biol 2009 ; 41 : 2114–2117. [CrossRef] [PubMed] [Google Scholar]
  27. Bosmann M, Ward PA. Role of C3, C5 and anaphylatoxin receptors in acute lung injury and in sepsis. In: Lambris JD, Hajishengallis G, eds. Current topics in innate immunity II. advances in experimental medicine and biology. New York, NY : Springer, 2012 : 147–59. [Google Scholar]
  28. Zhang T, Garstka MA, Li K. The controversial c5a receptor C5aR2: its role in health and disease. J Immunol Res 2017 ; 2017 : e8193932. [Google Scholar]
  29. Mastellos DC, Pires da Silva BGP, Fonseca BAL, et al. Complement C3 vs C5 inhibition in severe COVID-19: early clinical findings reveal differential biological efficacy. Clin Immunol 2020; 220 : 108598. [CrossRef] [PubMed] [Google Scholar]
  30. Carvelli J, Demaria O, Vély F, et al. Association of COVID-19 inflammation with activation of the C5a–C5aR1 axis. Nature 2020; 588 : 146–50. [CrossRef] [PubMed] [Google Scholar]
  31. Eriksson O, Hultström M, Persson B, et al. Mannose-binding lectin is associated with thrombosis and coagulopathy in critically ill COVID-19 patients. Thromb Haemost 2020; 120 : 1720–4. [CrossRef] [PubMed] [Google Scholar]
  32. Kenawy HI, Boral I, Bevington A. Complement-coagulation cross-talk: a potential mediator of the physiological activation of complement by low pH. Front Immunol 2015 ; 6 : 215. [CrossRef] [PubMed] [Google Scholar]
  33. Ueda Y, Mohammed I, Song D, et al. Murine systemic thrombophilia and hemolytic uremic syndrome from a factor H point mutation. Blood 2017 ; 129 : 1184–1196. [CrossRef] [PubMed] [Google Scholar]
  34. Middleton EA, He X-Y, Denorme F, et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood 2020; 136 : 1169–79. [CrossRef] [PubMed] [Google Scholar]
  35. Ritis K, Doumas M, Mastellos D, et al. A novel C5a receptor-tissue factor cross-talk in neutrophils links innate immunity to coagulation pathways. J Immunol 2006 ; 177 : 4794–4802. [CrossRef] [PubMed] [Google Scholar]
  36. Mastaglio S, Ruggeri A, Risitano AM, et al. The first case of COVID-19 treated with the complement C3 inhibitor AMY-101. Clin Immunol 2020; 215 : 108450. [CrossRef] [PubMed] [Google Scholar]
  37. Diurno F, Numis FG, Porta G, et al. Eculizumab treatment in patients with COVID-19: preliminary results from real life ASL Napoli 2 Nord experience. Eur Rev Med Pharmacol Sci 2020; 24 : 4040–7. [PubMed] [Google Scholar]
  38. Mastellos DC, Ricklin D, Lambris JD. Clinical promise of next-generation complement therapeutics. Nat Rev Drug Discov 2019 ; 18 : 707–729. [CrossRef] [PubMed] [Google Scholar]
  39. Ueda Y, Miwa T, Ito D, et al. Differential contribution of C5aR and C5b–9 pathways to renal thrombic microangiopathy and macrovascular thrombosis in mice carrying an atypical hemolytic syndrome-related factor H mutation. Kidney Int 2019 ; 96 : 67–79. [Google Scholar]
  40. Rother RP, Rollins SA, Mojcik CF, et al. Discovery and development of the complement inhibitor eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria. Nat Biotechnol 2007 ; 25 : 1256–1264. [Google Scholar]
  41. Morgan BP, Harris CL. Complement, a target for therapy in inflammatory and degenerative diseases. Nat Rev Drug Discov 2015 ; 14 : 857–877. [Google Scholar]
  42. Zuber J, Fakhouri F, Roumenina LT, et al. Use of eculizumab for atypical haemolytic uraemic syndrome and C3 glomerulopathies. Nat Rev Nephrol 2012 ; 8 : 643–657. [Google Scholar]
  43. Annane D, Heming N, Grimaldi-Bensouda L, et al. Eculizumab as an emergency treatment for adult patients with severe COVID-19 in the intensive care unit: a proof-of-concept study. EClinicalMedicine 2020; 100590. [Google Scholar]
  44. Covid-19 roundup: Alexion’s C5 inhibitor ultomiris misses the PhIII bar; Lonza in waiting game to use ingredients in Moderna vaccine. https://endpts.com/covid-19-roundup-alexions-c5-inhibitor-ultomiris-misses-the-phiii-bar/. [Google Scholar]
  45. Latuszek A, Liu Y, Olsen O, et al. Inhibition of complement pathway activation with pozelimab, a fully human antibody to complement component C5. PLoS One 2020; 15 : e0231892. [Google Scholar]
  46. Jordan SC, Kucher K, Bagger M, et al. Intravenous immunoglobulin significantly reduces exposure of concomitantly administered anti-C5 monoclonal antibody tesidolumab. Am J Transplant 2020; 20 : 2581–8. [Google Scholar]
  47. Röth A, Nishimura JI, Nagy Z, et al. The complement C5 inhibitor crovalimab in paroxysmal nocturnal hemoglobinuria. Blood 2020; 135 : 912–20. [Google Scholar]
  48. Chow V, Pan J, Chien D, et al. A randomized, double-blind, single-dose, three-arm, parallel group study to determine pharmacokinetic similarity of ABP 959 and eculizumab (Soliris®) in healthy male subjects. Eur J Haematol 2020; 105 : 66–74. [Google Scholar]
  49. Guo RF, Ward PA. Role of C5a in inflammatory responses. Annu Rev Immunol 2005 ; 23 : 821–852. [Google Scholar]
  50. Hammerschmidt D, Hudson L, Weaver LJ. et al. Association of complement activation and elevated plasma-C5a with adult respiratory distress syndrome: pathophysiological relevance and possible prognostic value. Lancet 1980 ; 315 : 947–949. [Google Scholar]
  51. Efficacy and safety study of BDB-001 in severe COVID-19 with ALI/ARDS. https://clinicaltrials.gov/ct2/show/NCT04449588. [Google Scholar]
  52. Vlaar APJ, de Bruin S, Busch M, et al. Anti-C5a antibody IFX-1 (vilobelimab) treatment versus best supportive care for patients with severe COVID-19 (PANAMO): an exploratory, open-label, phase 2 randomised controlled trial. Lancet Rheumatol 2020; 2 : e764–e73. [Google Scholar]
  53. Lu JD, Milakovic M, Ortega-Loayza AG, et al. Pyoderma gangrenosum: proposed pathogenesis and current use of biologics with an emphasis on complement C5a inhibitor IFX-1. Expert Opin Investig Drugs 2020; 29 : 1179–85. [Google Scholar]
  54. Gerard NP, Lu B, Liu P, et al. An Anti-inflammatory function for the complement anaphylatoxin C5a-binding protein, C5L2. J Biol Chem 2005 ; 280 : 39677–39680. [Google Scholar]
  55. Ram Kumar Pandian S, Arunachalam S, Deepak V, et al. Targeting complement cascade: an alternative strategy for COVID-19. 3 Biotech 2020; 10 : 479. [Google Scholar]
  56. Cavaillon JM, Sansonetti P, Goldman M. Jules Bordet, un homme de convictionCentenaire de l’attribution de son prix Nobel. Med Sci (Paris) 2020; 36 : 803–9. [EDP Sciences] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.