Modèles alternatifs
Open Access
Issue
Med Sci (Paris)
Volume 37, Number 2, Février 2021
Modèles alternatifs
Page(s) 167 - 177
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2020282
Published online 16 February 2021
  1. Dunn CW, Hejnol A, Matus DQ, et al. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 2008 ; 452 : 745–749. [CrossRef] [PubMed] [Google Scholar]
  2. Technau U, Steele RE. Evolutionary crossroads in developmental biology: Cnidaria. Development 2011 ; 138 : 1447–1458. [PubMed] [Google Scholar]
  3. Babonis LS, Martindale MQ, Ryan JF. Do novel genes drive morphological novelty? An investigation of the nematosomes in the sea anemone Nematostella vectensis. BMC Evol Biol 2016 ; 16 : 114. [CrossRef] [PubMed] [Google Scholar]
  4. Holstein T, Tardent P. An ultrahigh-speed analysis of exocytosis: nematocyst discharge. Science 1984 ; 223 : 830–833. [Google Scholar]
  5. Trembley A. Mémoires pour servir à l’histoire d‘un genre de polypes d’eau douce, à bras en forme de cornes. Leiden : Verbeek JH, 1744 : 404 p. [Google Scholar]
  6. Hand C, Uhlinger KR. The culture, sexual and asexual reproduction, and growth of the sea anemone Nematostella vectensis. Biol Bull 1992 ; 182 : 169–176. [CrossRef] [PubMed] [Google Scholar]
  7. Layden MJ, Rentzsch F, Röttinger E. The rise of the starlet sea anemone Nematostella vectensis as a model system to investigate development and regeneration. WIREs Dev Biol 2016 ; 5 : 408–428. [CrossRef] [Google Scholar]
  8. Amiel A, Chang P, Momose T, Houliston E. Clytia hemisphaerica: a cnidarian model for studying oogenesis. In: Verlhac MH, Villeneuve A eds. Oogenesis: the universal process. NewYork :Wiley, 2010 : 82–101. [Google Scholar]
  9. DuBuc TQ, Schnitzler CE, Chrysostomou E, et al. Transcription factor AP2 controls cnidarian germ cell induction. Science 2020; 367 : 757–62. [Google Scholar]
  10. Hand C, Uhlinger KR. The unique, widely distributed, estuarine sea anemone, Nematostella vectensis, Stephenson: a review, new facts, and questions. Estuaries 1994 ; 17 : 501. [CrossRef] [Google Scholar]
  11. Steinmetz PRH, Aman A, Kraus JEM, Technau U. Gut-like ectodermal tissue in a sea anemone challenges germ layer homology. Nat Ecol Evol 2017 ; 1 : 1–8. [CrossRef] [PubMed] [Google Scholar]
  12. Sebé-Pedrós A, Saudemont B, Chomsky E, et al. Cnidarian cell type diversity and regulation revealed by whole-organism single-cell RNA-Seq. Cell 2018 ; 173 : 1520. [CrossRef] [PubMed] [Google Scholar]
  13. Nakanishi N, Renfer E, Technau U, Rentzsch F. Nervous systems of the sea anemone Nematostella vectensis are generated by ectoderm and endoderm and shaped by distinct mechanisms. Development 2012 ; 139 : 347–357. [PubMed] [Google Scholar]
  14. Hand C, Uhlinger KR. The culture, sexual and asexual reproduction, and growth of the sea anemone Nematostella vectensis. Biol Bull 1992 ; 182 : 169–176. [CrossRef] [PubMed] [Google Scholar]
  15. Hand C, Uhlinger KR. Asexual reproduction by transverse fission and some anomalies in the sea anemone Nematostella vectensis. Invertebr Biol 1995 ; 114 : 9. [Google Scholar]
  16. Ormestad M, Martindale M, Rottinger E. A comparative gene expression database for invertebrates. EvoDevo 2011 ; 2 : 17. [CrossRef] [PubMed] [Google Scholar]
  17. Passamaneck YJ, Martindale MQ. Cell proliferation is necessary for the regeneration of oral structures in the anthozoan cnidarian Nematostella vectensis. BMC Dev Biol 2012 ; 12 : 1. [CrossRef] [PubMed] [Google Scholar]
  18. Putnam NH, Srivastava M, Hellsten U, et al. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 2007 ; 317 : 86–94. [Google Scholar]
  19. Schwaiger M, Schonauer A, Rendeiro AF, et al. Evolutionary conservation of the eumetazoan gene regulatory landscape. Genome Research 2014 ; 24 : 639–650. [CrossRef] [PubMed] [Google Scholar]
  20. Warner JF, Guerlais V, Amiel AR, et al. NvERTx: a gene expression database to compare embryogenesis and regeneration in the sea anemone Nematostella vectensis. Development 2018 ; 145 : 162867. [Google Scholar]
  21. Genikhovich G, Technau U. The starlet sea anemone Nematostella vectensis: an anthozoan model organism for studies in comparative genomics and functional evolutionary developmental biology. Cold Spring Harb Protoc 2009 ; 9 : 129–129. [Google Scholar]
  22. Ikmi A, McKinney SA, Delventhal KM, Gibson MC. TALEN and CRISPR/Cas9-mediated genome editing in the early-branching metazoan Nematostella vectensis. Nat Commun 2014 ; 5 : 5486. [Google Scholar]
  23. Tal Y, Ayalon A, Sharaev A, et al. Continuous drug release by sea anemone Nematostella vectensis stinging microcapsules. Marine Drugs 2014 ; 12 : 734–745. [CrossRef] [PubMed] [Google Scholar]
  24. Pepermans E, Michel V, Goodyear R, et al. The CD2 isoform of protocadherin-15 is an essential component of the tip-link complex in mature auditory hair cells. EMBO Mol Med 2014 ; 6 : 984–992. [Google Scholar]
  25. Michalski N, Petit C. Genes involved in the development and physiology of both the peripheral and central auditory systems. Annu Rev Neurosci 2019 ; 42 : 67–86. [CrossRef] [PubMed] [Google Scholar]
  26. Richardson GP, Petit C. Hair-bundle links: genetics as the gateway to function. Cold Spring Harb Perspect Med 2019 ; 9 : a033142. [Google Scholar]
  27. Watson GM, Mire P, Hudson RR. Hair bundles of sea anemones as a model system for vertebrate hair bundles. Hear Res 1997 ; 107 : 53–66. [CrossRef] [PubMed] [Google Scholar]
  28. Watson GM, Pham L, Graugnard EM, Mire P. Cadherin 23-like polypeptide in hair bundle mechanoreceptors of sea anemones. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2008 ; 194 : 811–820. [CrossRef] [PubMed] [Google Scholar]
  29. Watson GM, Mire P, Kinler KM. Mechanosensitivity in the model sea anemone Nematostella vectensis. Marine Biology 2009 ; 156 : 2129–2137. [Google Scholar]
  30. Erkman L, McEvilly RJ, Luo L, et al. Role of transcription factors Brn-3.1 and Brn-3.2 in auditory and visual system development. Nature 1996 ; 381 : 603–606. [CrossRef] [PubMed] [Google Scholar]
  31. Xiang M, Gan L, Li D, et al. Essential role of POU-domain factor Brn-3c in auditory and vestibular hair cell development. Proc Natl Acad Sci USA 1997 ; 94 : 9445–9450. [CrossRef] [Google Scholar]
  32. Tournière O, Dolan D, Richards GS, et al. NvPOU4/brain3 functions as a terminal selector gene in the nervous system of the cnidarian Nematostella vectensis. Cell Rep 2020; 30 : 4473–5. [CrossRef] [PubMed] [Google Scholar]
  33. Caberlotto E, Michel V, Foucher I, et al. Usher type 1G protein sans is a critical component of the tip-link complex, a structure controlling actin polymerization in stereocilia. Proc Natl Acad Sci USA 2011 ; 108 : 5825–5830. [CrossRef] [Google Scholar]
  34. Morgan TH. Columbia university biological series: regeneration. New York: Macmillan, 1901 : 316 p [Google Scholar]
  35. Siebert S, Farrell JA, Cazet JF, et al. Stem cell differentiation trajectories in Hydra resolved at single-cell resolution. Science 2019; 365 : eaav9314. [Google Scholar]
  36. Wittlieb J, Khalturin K, Lohmann JU, et al. Transgenic Hydra allow in vivo tracking of individual stem cells during morphogenesis. Proc Natl Acad Sci USA 2006 ; 103 : 6208–6211. [CrossRef] [Google Scholar]
  37. Warner JF, Amiel AR, Johnston H, Röttinger E. Regeneration is a partial redeployment of the embryonic gene network. BioRxiv 2019; 658930. doi: https://doi.org/10.1101/658930. [Google Scholar]
  38. Amiel AR, Johnston HT, Nedoncelle K, et al. Characterization of morphological and cellular events underlying oral regeneration in the sea anemone. Nematostella vectensis. Int J Mol Sci 2015 ; 16 : 28449–28471. [CrossRef] [Google Scholar]
  39. Amiel AR, Foucher K, Ferreira S, Röttinger E. Synergic coordination of stem cells is required to induce a regenerative response in anthozoan cnidarians. BioRxiv 2019; 891804. doi: https://doi.org/10.1101/2019.12.31.891804. [Google Scholar]
  40. Schaffer AA, Bazarsky M, Levy K, et al. A transcriptional time-course analysis of oral vs. aboral whole-body regeneration in the sea anemone Nematostella vectensis. BMC Genomics 2016 ; 17 : 718. [CrossRef] [PubMed] [Google Scholar]
  41. Burton PM, Finnerty JR. Conserved and novel gene expression between regeneration and asexual fission in Nematostella vectensis. Dev Genes Evol 2009 ; 219 : 79–87. [CrossRef] [PubMed] [Google Scholar]
  42. Layden MJ, Johnston H, Amiel AR, et al. MAPK signaling is necessary for neurogenesis in Nematostella vectensis. BMC Biol 2016 ; 14 : 61. [CrossRef] [PubMed] [Google Scholar]
  43. Amiel AR, Johnston H, Chock T, et al. A bipolar role of the transcription factor ERG for cnidarian germ layer formation and apical domain patterning. Dev Biol 2017 ; 430 : 346–361. [CrossRef] [PubMed] [Google Scholar]
  44. Fritzenwanker JH, Technau U. Induction of gametogenesis in the basal cnidarian Nematostella vectensis (Anthozoa). Dev Genes Evol 2002 ; 212 : 99–103. [CrossRef] [PubMed] [Google Scholar]
  45. Martínez DE. Mortality patterns suggest lack of senescence in hydra. Exp Gerontol 1998 ; 33 : 217–225. [CrossRef] [PubMed] [Google Scholar]
  46. Schaible R, Scheuerlein A, Dan΄ko MJ, et al. Constant mortality and fertility over age in Hydra. Proc Natl Acad Sci USA 2015 ; 112 : 15701–15706. [CrossRef] [Google Scholar]
  47. Yoshida K, Fujisawa T, Hwang JS, et al. Degeneration after sexual differentiation in hydra and its relevance to the evolution of aging. Gene 2006 ; 385 : 64–70. [Google Scholar]
  48. Traut W, Szczepanowski M, Vítková M, et al. The telomere repeat motif of basal metazoa. Chromosome Res 2007 ; 15 : 371–382. [PubMed] [Google Scholar]
  49. Shay JW, Pereira-Smith OM, Wright WE. A role for both RB and p53 in the regulation of human cellular senescence. Exp Cell Res 1991 ; 196 : 33–39. [CrossRef] [PubMed] [Google Scholar]
  50. Counter CM, Avilion AA. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J 1992 ; 11 : 1921–1929. [PubMed] [Google Scholar]
  51. Shay JW. Role of telomeres and telomerase in aging and cancer. Cancer Discovery 2016 ; 6 : 584–593. [CrossRef] [PubMed] [Google Scholar]
  52. Bodnar AG, Ouellette M, Frolkis M, et al. Extension of lifespan by introduction of telomerase into normal human cells. Science 1998 ; 279 : 349–352. [Google Scholar]
  53. Ding Z, Wu CJ, Jaskelioff M, et al. Telomerase reactivation following telomere dysfunction yields murine prostate tumors with bone metastases. Cell 2012 ; 148 : 896–907. [CrossRef] [PubMed] [Google Scholar]
  54. Blasco MA, Lee HW, Hande MP, et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 1997 ; 91 : 25–34. [CrossRef] [PubMed] [Google Scholar]
  55. Lee HW, Blasco MA, Gottlieb GJ, et al. Essential role of mouse telomerase in highly proliferative organs. Nature 1998 ; 392 : 569–574. [CrossRef] [PubMed] [Google Scholar]
  56. Alter BP, Giri N, Savage SA, Rosenberg PS. Cancer in dyskeratosis congenita. Blood 2009 ; 113 : 6549–6557. [Google Scholar]
  57. Hoareau-Aveilla C, Henry Y, Leblanc T. La dyskératose congénitale : une maladie méconnue due à un maintien défectueux des télomères. Med Sci (Paris) 2008 ; 24 : 390–398. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  58. Röttinger E, Dahlin P, Martindale MQ. A framework for the establishment of a cnidarian gene regulatory network for endomesoderm specification: the inputs of b-catenin/TCF signaling. PLoS Genet 2012 ; 8 : e1003164. [CrossRef] [PubMed] [Google Scholar]
  59. Layden MJ, Röttinger E, Wolenski FS, et al. Microinjection of mRNA or morpholinos for reverse genetic analysis in the starlet sea anemone. Nematostella vectensis. Nat Protoc 2013 ; 8 : 924–934. [CrossRef] [Google Scholar]
  60. Wikramanayake AH, Hong M, Lee NP, et al. An ancient role for nuclear beta-catenin in the evolution of axial polarity and germ layer segregation. Nature 2003 ; 426 : 446–450. [CrossRef] [PubMed] [Google Scholar]
  61. Zimmerman B, Robb M.C.S., Genikhovich G, et al. Sea anemone genomes reveal ancestral metazoan chromosomal macrosynteny. BioRxiv 2020; 359448. doi: https://doi.org/10.1101/2020.10.30.359448. [Google Scholar]
  62. Magie CR, Daly M, Martindale MQ. Gastrulation in the cnidarian Nematostella vectensis occurs via invagination not ingression. Dev Biol 2007 ; 305 : 483–497. [CrossRef] [PubMed] [Google Scholar]
  63. Renfer E, Amon-Hassenzahl A, Steinmetz PRH, Technau U. A muscle-specific transgenic reporter line of the sea anemone Nematostella vectensis. Proc Natl Acad Sci USA 2010 ; 107 : 104–108. [CrossRef] [Google Scholar]
  64. Tulin S, Aguiar D, Istrail S, Smith J. A quantitative reference transcriptome for Nematostella vectensis early embryonic development: a pipeline for de novo assembly in emerging model systems. EvoDevo 2013 ; 4 : 16. [CrossRef] [PubMed] [Google Scholar]
  65. Vieillissement et mort : de la cellule à l’individu. Med Sci (Paris) 2020 : 36 : 1109–212. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.