Open Access
Issue |
Med Sci (Paris)
Volume 37, Number 2, Février 2021
|
|
---|---|---|
Page(s) | 179 - 184 | |
Section | Repères | |
DOI | https://doi.org/10.1051/medsci/2021001 | |
Published online | 16 February 2021 |
- DGOS. Atlas des systèmes d’information hospitaliers. Ministère des Solidarités et de la Santé, Dec. 18, 2020. https://solidarites-sante.gouv.fr/systeme-de-sante-et-medico-social/e-sante/sih/article/atlas-des-systemes-d-information-hospitaliers. [Google Scholar]
- Plan France Médecine Génomique 2025/Aviesan. https://www.aviesan.fr/aviesan/accueil/toute-l-actualite/plan-france-medecine-genomique-2025. [Google Scholar]
- Stephens ZD, Lee SY, Faghri F, et al. Big Data: Astronomical or Genomical?. PLoS Biol 2015 ; 13 : e1002195. [CrossRef] [PubMed] [Google Scholar]
- Vande Perre S, Duron L, Milon A, et al. Radiomique : mode d’emploi. Méthodologie et exemples d’application en imagerie de la femme. Imag Femme 2019; 29 : 25–33. [CrossRef] [Google Scholar]
- Banerjee A, Chakraborty C, Kumar A, Biswas D. Handbook of data science approaches for biomedical engineering. Emerging trends in IoT and big data analytics for biomedical and health care technologies. New York : Elsevier 2019 : 35. [Google Scholar]
- Les GAFAM continuent leur percée dans la santé. https://www.ticpharma.com/story/1079/les-gafam-continuent-leur-percee-dans-la-sante.html. [Google Scholar]
- Singh M, Sachan S, Singh A, Singh KK. Emergence of Pharmaceutical industry growth with industrial IoT approach. Internet of things in pharma industry: possibilities and challenges. New York : Elsevier 2020: 195–216. [Google Scholar]
- Laboratoire d’épidémiologie digitale. https://www.campusbiotech.ch/fr/node/353. [Google Scholar]
- Nguyen QC, Huang Y, Kumar A, et al. Using 164 million google street view images to derive built environment predictors of COVID-19 cases. Int J Environ Res Public Health 2020; 17 : 6359. [Google Scholar]
- Sharifi A. Yield prediction with machine learning algorithms and satellite images. J Sci Food Agric 2020; doi: 10.1002/jsfa.10696. [Google Scholar]
- Bruzelius E, Le M, Kenny A, et al. Satellite images and machine learning can identify remote communities to facilitate access to health services. J Am Med Inform Assoc 2019 ; 26 : 806–812. [CrossRef] [PubMed] [Google Scholar]
- Patrono L, Primiceri P, Rametta I, et al. An innovative approach for monitoring elderly behavior by detecting home appliance’s usage. 25th International Conference on Software, Telecommunications and Computer Networks (SoftCOM) 2017 : 1–7. [Google Scholar]
- Fell JM, Kennard H, Huebner G, et al. Energising health: a review of the health and care applications of smart meter data. Technical report, May 2017. 10.13140/RG.2.2.23987.63521 [Google Scholar]
- Kogan NE, Clemente L, Liautaud P, et al. An early warning approach to monitor covid-19 activity with multiple digital traces in near real-time. ArXiv July 2020. [Google Scholar]
- Poirier C, Lavenu A, Bertaud V, et al. Real time influenza monitoring using hospital big data in combination with machine learning methods: comparison study. JMIR Public Health Surveill 2018 ; 4 : e11361. [CrossRef] [PubMed] [Google Scholar]
- Sudlow C, Gallacher J, Allen N, et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med 2015 ; 12 : e1001779. [Google Scholar]
- Zins M, Goldberg M, the CONSTANCES team. The French CONSTANCES population-based cohort: design, inclusion and follow-up. Eur J Epidemiol 2015 ; 30 : 1317–1328. [Google Scholar]
- The All of Us Research Program Investigators. The All of Us research program. N Engl J Med 2019 ; 381 : 7. [Google Scholar]
- National Research Council (US) Committee on a framework for developing a new taxonomy of disease, toward precision medicine: building a knowledge network for biomedical research and a new taxonomy of disease. Washington (DC) : National Academies Press (US), 2011. [Google Scholar]
- PCORnet. The national patient-centered clinical research network. https://pcornet.org/. [Google Scholar]
- Bubela T, Genuis SK, Janjua NZ, et al. Medical information commons to support learning healthcare systems: examples from Canada. J Law Med Ethics 2019 ; 47 : 97–105. [Google Scholar]
- Zhang L, Wang H, Li Q, et al. Big data and medical research in China. BMJ 2018 ; 360 : [Google Scholar]
- Wu F, Lu C, Zhu M, et al. Towards a new generation of artificial intelligence in China. Nat Mach Intell 2020; 2 : 312–6. [Google Scholar]
- Cuggia M, Combes S. The French health data hub and the German medical informatics initiatives: two national projects to promote data sharing in healthcare. Yearb Med Inform 2019 ; 28 : 195–202. [PubMed] [Google Scholar]
- Mamiko YA. The impact of big data and artificial intelligence (AI) in the insurance sector. 2020, p 36. http://www.oecd.org/finance/Impact-Big-Data-AI-in-the-Insurance-Sector.htm. [Google Scholar]
- Weill A, Païta M, Tuppin P, et al. Benfluorex and valvular heart disease: a cohort study of a million people with diabetes mellitus. Pharmacoepidemiol Drug Saf 2010 ; 19 : 1256–1262. [Google Scholar]
- CNIL. https://www.cnil.fr/fr/rgpd-de-quoi-parle-t-on. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.