Open Access
Med Sci (Paris)
Volume 37, Number 2, Février 2021
Page(s) 159 - 166
Section M/S Revues
Published online 16 February 2021
  1. Lacour B, Goujon S, Guissou S, et al. Childhood cancer survival in France, 2000-2008. Eur J Cancer Prev 2014 ; 23 : 449-57. [CrossRef] [PubMed] [Google Scholar]
  2. Braunstein S, Raleigh D, Bindra R, et al. Pediatric high-grade glioma: current molecular landscape and therapeutic approaches. J Neurooncol 2017 ; 134 : 541-9. [CrossRef] [PubMed] [Google Scholar]
  3. Bernier-Chastagner V, Grill J, Doz F, et al. Topotecan as a radiosensitizer in the treatment of children with malignant diffuse brainstem gliomas: results of a French Society of Paediatric Oncology Phase II Study. Cancer 2005 ; 104 : 2792-7. [CrossRef] [PubMed] [Google Scholar]
  4. Cohen KJ, Heideman RL, Zhou T, et al. Temozolomide in the treatment of children with newly diagnosed diffuse intrinsic pontine gliomas: a report from the Children’s Oncology Group. Neuro-Oncol 2011 ; 13 : 410-6. [CrossRef] [Google Scholar]
  5. Aguilera DG, Mazewski C, Hayes L, et al. Prolonged survival after treatment of diffuse intrinsic pontine glioma with radiation, temozolamide, and bevacizumab: report of 2 cases. J Pediatr Hematol Oncol 2013 ; 35 : e42-6. [CrossRef] [PubMed] [Google Scholar]
  6. Anderson RCE, Kennedy B, Yanes CL, et al. Convection-enhanced delivery of topotecan into diffuse intrinsic brainstem tumors in children. J Neurosurg Pediatr 2013 ; 11 : 289-95. [CrossRef] [PubMed] [Google Scholar]
  7. Yan H, Parsons DW, Jin G, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med 2009 ; 360 : 765-73. [Google Scholar]
  8. Jones DTW, Kocialkowski S, Liu L, et al. Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res 2008 ; 68 : 8673-7. [Google Scholar]
  9. Jacob K, Quang-Khuong D-A, Jones DTW, et al. Genetic aberrations leading to MAPK pathway activation mediate oncogene-induced senescence in sporadic pilocytic astrocytomas. Clin Cancer Res 2011 ; 17 : 4650-60. [CrossRef] [PubMed] [Google Scholar]
  10. Sturm D, Pfister SM, Jones DTW. Pediatric Gliomas: Current Concepts on Diagnosis, Biology, and Clinical Management. J Clin Oncol 2017 ; 35 : 2370-7. [CrossRef] [PubMed] [Google Scholar]
  11. Roux A, Pallud J, Saffroy R, et al. High-grade gliomas in adolescents and young adults highlight histomolecular differences with their adult and paediatric counterparts. Neuro-Oncol 2020 ; 22(8) : 1190-202. [CrossRef] [Google Scholar]
  12. Schwartzentruber J, Korshunov A, Liu X-Y, et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 2012 ; 482 : 226-31. [CrossRef] [PubMed] [Google Scholar]
  13. Wu G, Broniscer A, McEachron TA, et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 2012 ; 44 : 251-3. [Google Scholar]
  14. Castel D, Philippe C, Calmon R, et al. Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. Acta Neuropathol (Berl) 2015 ; 130 : 815-27. [CrossRef] [PubMed] [Google Scholar]
  15. Werbrouck C, Evangelista CCS, Lobón-Iglesias M-J, et al. TP53 Pathway Alterations Drive Radioresistance in Diffuse Intrinsic Pontine Gliomas (DIPG). Clin Cancer Res 2019 ; 25 : 6788-800. [CrossRef] [PubMed] [Google Scholar]
  16. Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol (Berl) 2016 ; 131 : 803-20. [CrossRef] [PubMed] [Google Scholar]
  17. Mackay A, Burford A, Carvalho D, et al. Integrated Molecular Meta-Analysis of 1,000 Pediatric High-Grade and Diffuse Intrinsic Pontine Glioma. Cancer Cell 2017 ; 32 : 520-37.e5. [CrossRef] [PubMed] [Google Scholar]
  18. Puget S, Beccaria K, Blauwblomme T, et al. Biopsy in a series of 130 pediatric diffuse intrinsic Pontine gliomas. Childs Nerv Syst 2015 ; 31 : 1773-80. [CrossRef] [PubMed] [Google Scholar]
  19. El-Khouly FE, Veldhuijzen van Zanten SEM, Santa-Maria Lopez V, et al. Diagnostics and treatment of diffuse intrinsic pontine glioma: where do we stand? J Neurooncol 2019 ; 145 : 177-84. [CrossRef] [PubMed] [Google Scholar]
  20. Williams JR, Young CC, Vitanza NA, et al. Progress in diffuse intrinsic pontine glioma: advocating for stereotactic biopsy in the standard of care. Neurosurg Focus 2020 ; 48 : E4. [Google Scholar]
  21. Ray-Gallet D, Gérard A, Polo S, et al. Variations sur le thème du code histone. MedSci (Paris) 2005 ; 21 : 384–9. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  22. Khuong-Quang DA, Gerges N, Jabado N. Les glioblastomes de l’enfant et du jeune adulte : une histoire de mutations d’histone et de remodelage de la chromatine Med Sci (Paris) 2012 ; 28 : 809-12. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  23. Lewis PW, Müller MM, Koletsky MS, et al. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 2013 ; 340 : 857-61. [Google Scholar]
  24. Bender S, Tang Y, Lindroth AM, et al. Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas. Cancer Cell 2013 ; 24 : 660-72. [CrossRef] [PubMed] [Google Scholar]
  25. Piunti A, Hashizume R, Morgan MA, et al. Therapeutic targeting of polycomb and BET bromodomain proteins in diffuse intrinsic pontine gliomas. Nat Med 2017 ; 23 : 493-500. [CrossRef] [PubMed] [Google Scholar]
  26. Nagaraja S, Quezada MA, Gillespie SM, et al. Histone variant and cell context determine h3k27m reprogramming of the enhancer landscape and oncogenic state. Mol Cell 2019 ; 76 : 965-80.e12. [CrossRef] [PubMed] [Google Scholar]
  27. Boileau M, Shirinian M, Gayden T, et al. Mutant H3 histones drive human pre-leukemic hematopoietic stem cell expansion and promote leukemic aggressiveness. Nat Commu 2019 ; 10 : 2891. [CrossRef] [Google Scholar]
  28. Jain SU, Do TJ, Lund PJ, et al. PFA ependymoma-associated protein EZHIP inhibits PRC2 activity through a H3 K27M-like mechanism. Nat Commun 2019 ; 10 : 2146. [Google Scholar]
  29. Pollard SM, Yoshikawa K, Clarke ID, et al. Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell 2009 ; 4 : 568-80. [Google Scholar]
  30. Cockle JV, Picton S, Levesley J, et al. Cell migration in paediatric glioma; characterisation and potential therapeutic targeting. Br J Cancer 2015 ; 112 : 693-703. [CrossRef] [PubMed] [Google Scholar]
  31. Plessier A, Le Dret L, Varlet P, et al. New in vivo avatars of diffuse intrinsic pontine gliomas (DIPG) from stereotactic biopsies performed at diagnosis. Oncotarget 2017 ; 8 : 52543-59. [PubMed] [Google Scholar]
  32. Lin GL, Wilson KM, Ceribelli M, et al. Therapeutic strategies for diffuse midline glioma from high-throughput combination drug screening. Sci Transl Med 2019 ; 11 : eaaw0064. [CrossRef] [PubMed] [Google Scholar]
  33. Chaves C, Declèves X, Taghi M, et al. Characterization of the blood-brain barrier integrity and the brain transport of sn-38 in an orthotopic xenograft rat model of diffuse intrinsic pontine glioma. Pharmaceutics 2020 ; 12 : 399. [Google Scholar]
  34. Subashi E, Cordero FJ, Halvorson KG, et al. Tumor location, but not H3.3K27M, significantly influences the blood-brain-barrier permeability in a genetic mouse model of pediatric high-grade glioma. J Neurooncol 2016 ; 126 : 243-51. [CrossRef] [PubMed] [Google Scholar]
  35. Larson JD, Kasper LH, Paugh BS, et al. Histone H3.3 K27M accelerates spontaneous brainstem glioma and drives restricted changes in bivalent gene expression. Cancer Cell 2019 ; 35 : 140-55.e7. [CrossRef] [PubMed] [Google Scholar]
  36. Aboian MS, Solomon DA, Felton E, et al. Imaging characteristics of pediatric diffuse midline gliomas with histone h3 k27m mutation. Am J Neuroradiol 2017 ; 38 : 795-800. [CrossRef] [Google Scholar]
  37. Nguyen A, Moussallieh FM, Mackay A, et al. Characterization of the transcriptional and metabolic responses of pediatric high grade gliomas to mTOR-HIF-1α axis inhibition. Oncotarget 2017 ; 8 : 71597-617. [PubMed] [Google Scholar]
  38. Evans SM, Judy KD, Dunphy I, et al. Hypoxia is important in the biology and aggression of human glial brain tumors. Clin Cancer Res 2004 ; 10 : 8177-84. [CrossRef] [PubMed] [Google Scholar]
  39. Grasso CS, Tang Y, Truffaux N, et al. Functionally defined therapeutic targets in diffuse intrinsic pontine glioma. Nat Med 2015 ; 21 : 555-9. [CrossRef] [PubMed] [Google Scholar]
  40. Hashizume R, Andor N, Ihara Y, et al. Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma. Nat Med 2014 ; 20 : 1394-6. [CrossRef] [PubMed] [Google Scholar]
  41. Katagi H, Louis N, Unruh D, et al. Radiosensitization by histone h3 demethylase inhibition in diffuse intrinsic pontine glioma. Clin Cancer Res 2019 ; 25 : 5572-83. [CrossRef] [PubMed] [Google Scholar]
  42. Pollack IF, Jakacki RI, Blaney SM, et al. Phase I trial of imatinib in children with newly diagnosed brainstem and recurrent malignant gliomas: a Pediatric Brain Tumor Consortium report. Neuro-Oncol 2007 ; 9 : 145-60. [CrossRef] [Google Scholar]
  43. Broniscer A, Jia S, Mandrell B, et al. Phase 1 trial, pharmacokinetics, and pharmacodynamics of dasatinib combined with crizotinib in children with recurrent or progressive high-grade and diffuse intrinsic pontine glioma. Pediatr Blood Cancer 2018 ; 65 : e27035. [Google Scholar]
  44. Carvalho D, Taylor KR, Olaciregui NG, et al. ALK2 inhibitors display beneficial effects in preclinical models of ACVR1 mutant diffuse intrinsic pontine glioma. Commun Biol 2019 ; 2 : 156. [Google Scholar]
  45. Becher OJ, Gilheeney SW, Khakoo Y, et al. A phase I study of perifosine with temsirolimus for recurrent pediatric solid tumors. Pediatr Blood Cancer 2017 ; 64 (7). [Google Scholar]
  46. Hall MD, Odia Y, Allen JE, et al. First clinical experience with DRD2/3 antagonist ONC201 in H3 K27M-mutant pediatric diffuse intrinsic pontine glioma: a case report. J Neurosurg Pediatr 2019 ; 1-7. [Google Scholar]
  47. Catros V. Les CAR-T cells, des cellules tueuses spécifiques d’antigènes tumoraux : de nouvelles générations pour le traitement des tumeurs solides. Med Sci (Paris) 2019 ; 35 : 316-26. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  48. Mount CW, Majzner RG, Sundaresh S, et al. Potent antitumor efficacy of anti-GD2 CAR T cells in H3-K27M+ diffuse midline gliomas. Nat Med 2018 ; 24 : 572-9. [CrossRef] [PubMed] [Google Scholar]
  49. Warren KE. Beyond the blood:brain barrier: the importance of central nervous system (cns) pharmacokinetics for the treatment of cns tumors, including diffuse intrinsic pontine glioma. Front Oncol 2018 ; 8 : 239. [CrossRef] [PubMed] [Google Scholar]
  50. Beccaria K, Canney M, Bouchoux G, et al. Blood-brain barrier disruption with low-intensity pulsed ultrasound for the treatment of pediatric brain tumors: a review and perspectives. Neurosurg Focus 2020 ; 48 : E10. [Google Scholar]
  51. Jones C, Karajannis MA, Jones DTW, et al. Pediatric high-grade glioma: biologically and clinically in need of new thinking. Neuro-Oncol 2017 ; 19 : 153-61. [Google Scholar]
  52. Dietrich PY, Dutoit V. Stratégies de vaccination thérapeutique dans le glioblastome. Med Sci (Paris) 2020 ; 36 : 319-22. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.