Open Access
Numéro |
Med Sci (Paris)
Volume 37, Numéro 2, Février 2021
Modèles alternatifs
|
|
---|---|---|
Page(s) | 167 - 177 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2020282 | |
Publié en ligne | 16 février 2021 |
- Dunn CW, Hejnol A, Matus DQ, et al. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 2008 ; 452 : 745–749. [CrossRef] [PubMed] [Google Scholar]
- Technau U, Steele RE. Evolutionary crossroads in developmental biology: Cnidaria. Development 2011 ; 138 : 1447–1458. [PubMed] [Google Scholar]
- Babonis LS, Martindale MQ, Ryan JF. Do novel genes drive morphological novelty? An investigation of the nematosomes in the sea anemone Nematostella vectensis. BMC Evol Biol 2016 ; 16 : 114. [CrossRef] [PubMed] [Google Scholar]
- Holstein T, Tardent P. An ultrahigh-speed analysis of exocytosis: nematocyst discharge. Science 1984 ; 223 : 830–833. [Google Scholar]
- Trembley A. Mémoires pour servir à l’histoire d‘un genre de polypes d’eau douce, à bras en forme de cornes. Leiden : Verbeek JH, 1744 : 404 p. [Google Scholar]
- Hand C, Uhlinger KR. The culture, sexual and asexual reproduction, and growth of the sea anemone Nematostella vectensis. Biol Bull 1992 ; 182 : 169–176. [CrossRef] [PubMed] [Google Scholar]
- Layden MJ, Rentzsch F, Röttinger E. The rise of the starlet sea anemone Nematostella vectensis as a model system to investigate development and regeneration. WIREs Dev Biol 2016 ; 5 : 408–428. [CrossRef] [Google Scholar]
- Amiel A, Chang P, Momose T, Houliston E. Clytia hemisphaerica: a cnidarian model for studying oogenesis. In: Verlhac MH, Villeneuve A eds. Oogenesis: the universal process. NewYork :Wiley, 2010 : 82–101. [Google Scholar]
- DuBuc TQ, Schnitzler CE, Chrysostomou E, et al. Transcription factor AP2 controls cnidarian germ cell induction. Science 2020; 367 : 757–62. [Google Scholar]
- Hand C, Uhlinger KR. The unique, widely distributed, estuarine sea anemone, Nematostella vectensis, Stephenson: a review, new facts, and questions. Estuaries 1994 ; 17 : 501. [CrossRef] [Google Scholar]
- Steinmetz PRH, Aman A, Kraus JEM, Technau U. Gut-like ectodermal tissue in a sea anemone challenges germ layer homology. Nat Ecol Evol 2017 ; 1 : 1–8. [CrossRef] [PubMed] [Google Scholar]
- Sebé-Pedrós A, Saudemont B, Chomsky E, et al. Cnidarian cell type diversity and regulation revealed by whole-organism single-cell RNA-Seq. Cell 2018 ; 173 : 1520. [CrossRef] [PubMed] [Google Scholar]
- Nakanishi N, Renfer E, Technau U, Rentzsch F. Nervous systems of the sea anemone Nematostella vectensis are generated by ectoderm and endoderm and shaped by distinct mechanisms. Development 2012 ; 139 : 347–357. [PubMed] [Google Scholar]
- Hand C, Uhlinger KR. The culture, sexual and asexual reproduction, and growth of the sea anemone Nematostella vectensis. Biol Bull 1992 ; 182 : 169–176. [CrossRef] [PubMed] [Google Scholar]
- Hand C, Uhlinger KR. Asexual reproduction by transverse fission and some anomalies in the sea anemone Nematostella vectensis. Invertebr Biol 1995 ; 114 : 9. [Google Scholar]
- Ormestad M, Martindale M, Rottinger E. A comparative gene expression database for invertebrates. EvoDevo 2011 ; 2 : 17. [CrossRef] [PubMed] [Google Scholar]
- Passamaneck YJ, Martindale MQ. Cell proliferation is necessary for the regeneration of oral structures in the anthozoan cnidarian Nematostella vectensis. BMC Dev Biol 2012 ; 12 : 1. [CrossRef] [PubMed] [Google Scholar]
- Putnam NH, Srivastava M, Hellsten U, et al. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 2007 ; 317 : 86–94. [Google Scholar]
- Schwaiger M, Schonauer A, Rendeiro AF, et al. Evolutionary conservation of the eumetazoan gene regulatory landscape. Genome Research 2014 ; 24 : 639–650. [CrossRef] [PubMed] [Google Scholar]
- Warner JF, Guerlais V, Amiel AR, et al. NvERTx: a gene expression database to compare embryogenesis and regeneration in the sea anemone Nematostella vectensis. Development 2018 ; 145 : 162867. [Google Scholar]
- Genikhovich G, Technau U. The starlet sea anemone Nematostella vectensis: an anthozoan model organism for studies in comparative genomics and functional evolutionary developmental biology. Cold Spring Harb Protoc 2009 ; 9 : 129–129. [Google Scholar]
- Ikmi A, McKinney SA, Delventhal KM, Gibson MC. TALEN and CRISPR/Cas9-mediated genome editing in the early-branching metazoan Nematostella vectensis. Nat Commun 2014 ; 5 : 5486. [Google Scholar]
- Tal Y, Ayalon A, Sharaev A, et al. Continuous drug release by sea anemone Nematostella vectensis stinging microcapsules. Marine Drugs 2014 ; 12 : 734–745. [CrossRef] [PubMed] [Google Scholar]
- Pepermans E, Michel V, Goodyear R, et al. The CD2 isoform of protocadherin-15 is an essential component of the tip-link complex in mature auditory hair cells. EMBO Mol Med 2014 ; 6 : 984–992. [Google Scholar]
- Michalski N, Petit C. Genes involved in the development and physiology of both the peripheral and central auditory systems. Annu Rev Neurosci 2019 ; 42 : 67–86. [CrossRef] [PubMed] [Google Scholar]
- Richardson GP, Petit C. Hair-bundle links: genetics as the gateway to function. Cold Spring Harb Perspect Med 2019 ; 9 : a033142. [Google Scholar]
- Watson GM, Mire P, Hudson RR. Hair bundles of sea anemones as a model system for vertebrate hair bundles. Hear Res 1997 ; 107 : 53–66. [CrossRef] [PubMed] [Google Scholar]
- Watson GM, Pham L, Graugnard EM, Mire P. Cadherin 23-like polypeptide in hair bundle mechanoreceptors of sea anemones. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2008 ; 194 : 811–820. [CrossRef] [PubMed] [Google Scholar]
- Watson GM, Mire P, Kinler KM. Mechanosensitivity in the model sea anemone Nematostella vectensis. Marine Biology 2009 ; 156 : 2129–2137. [Google Scholar]
- Erkman L, McEvilly RJ, Luo L, et al. Role of transcription factors Brn-3.1 and Brn-3.2 in auditory and visual system development. Nature 1996 ; 381 : 603–606. [CrossRef] [PubMed] [Google Scholar]
- Xiang M, Gan L, Li D, et al. Essential role of POU-domain factor Brn-3c in auditory and vestibular hair cell development. Proc Natl Acad Sci USA 1997 ; 94 : 9445–9450. [CrossRef] [Google Scholar]
- Tournière O, Dolan D, Richards GS, et al. NvPOU4/brain3 functions as a terminal selector gene in the nervous system of the cnidarian Nematostella vectensis. Cell Rep 2020; 30 : 4473–5. [CrossRef] [PubMed] [Google Scholar]
- Caberlotto E, Michel V, Foucher I, et al. Usher type 1G protein sans is a critical component of the tip-link complex, a structure controlling actin polymerization in stereocilia. Proc Natl Acad Sci USA 2011 ; 108 : 5825–5830. [CrossRef] [Google Scholar]
- Morgan TH. Columbia university biological series: regeneration. New York: Macmillan, 1901 : 316 p [Google Scholar]
- Siebert S, Farrell JA, Cazet JF, et al. Stem cell differentiation trajectories in Hydra resolved at single-cell resolution. Science 2019; 365 : eaav9314. [Google Scholar]
- Wittlieb J, Khalturin K, Lohmann JU, et al. Transgenic Hydra allow in vivo tracking of individual stem cells during morphogenesis. Proc Natl Acad Sci USA 2006 ; 103 : 6208–6211. [CrossRef] [Google Scholar]
- Warner JF, Amiel AR, Johnston H, Röttinger E. Regeneration is a partial redeployment of the embryonic gene network. BioRxiv 2019; 658930. doi: https://doi.org/10.1101/658930. [Google Scholar]
- Amiel AR, Johnston HT, Nedoncelle K, et al. Characterization of morphological and cellular events underlying oral regeneration in the sea anemone. Nematostella vectensis. Int J Mol Sci 2015 ; 16 : 28449–28471. [CrossRef] [Google Scholar]
- Amiel AR, Foucher K, Ferreira S, Röttinger E. Synergic coordination of stem cells is required to induce a regenerative response in anthozoan cnidarians. BioRxiv 2019; 891804. doi: https://doi.org/10.1101/2019.12.31.891804. [Google Scholar]
- Schaffer AA, Bazarsky M, Levy K, et al. A transcriptional time-course analysis of oral vs. aboral whole-body regeneration in the sea anemone Nematostella vectensis. BMC Genomics 2016 ; 17 : 718. [CrossRef] [PubMed] [Google Scholar]
- Burton PM, Finnerty JR. Conserved and novel gene expression between regeneration and asexual fission in Nematostella vectensis. Dev Genes Evol 2009 ; 219 : 79–87. [CrossRef] [PubMed] [Google Scholar]
- Layden MJ, Johnston H, Amiel AR, et al. MAPK signaling is necessary for neurogenesis in Nematostella vectensis. BMC Biol 2016 ; 14 : 61. [CrossRef] [PubMed] [Google Scholar]
- Amiel AR, Johnston H, Chock T, et al. A bipolar role of the transcription factor ERG for cnidarian germ layer formation and apical domain patterning. Dev Biol 2017 ; 430 : 346–361. [CrossRef] [PubMed] [Google Scholar]
- Fritzenwanker JH, Technau U. Induction of gametogenesis in the basal cnidarian Nematostella vectensis (Anthozoa). Dev Genes Evol 2002 ; 212 : 99–103. [CrossRef] [PubMed] [Google Scholar]
- Martínez DE. Mortality patterns suggest lack of senescence in hydra. Exp Gerontol 1998 ; 33 : 217–225. [CrossRef] [PubMed] [Google Scholar]
- Schaible R, Scheuerlein A, Dan΄ko MJ, et al. Constant mortality and fertility over age in Hydra. Proc Natl Acad Sci USA 2015 ; 112 : 15701–15706. [CrossRef] [Google Scholar]
- Yoshida K, Fujisawa T, Hwang JS, et al. Degeneration after sexual differentiation in hydra and its relevance to the evolution of aging. Gene 2006 ; 385 : 64–70. [Google Scholar]
- Traut W, Szczepanowski M, Vítková M, et al. The telomere repeat motif of basal metazoa. Chromosome Res 2007 ; 15 : 371–382. [PubMed] [Google Scholar]
- Shay JW, Pereira-Smith OM, Wright WE. A role for both RB and p53 in the regulation of human cellular senescence. Exp Cell Res 1991 ; 196 : 33–39. [CrossRef] [PubMed] [Google Scholar]
- Counter CM, Avilion AA. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J 1992 ; 11 : 1921–1929. [PubMed] [Google Scholar]
- Shay JW. Role of telomeres and telomerase in aging and cancer. Cancer Discovery 2016 ; 6 : 584–593. [CrossRef] [PubMed] [Google Scholar]
- Bodnar AG, Ouellette M, Frolkis M, et al. Extension of lifespan by introduction of telomerase into normal human cells. Science 1998 ; 279 : 349–352. [Google Scholar]
- Ding Z, Wu CJ, Jaskelioff M, et al. Telomerase reactivation following telomere dysfunction yields murine prostate tumors with bone metastases. Cell 2012 ; 148 : 896–907. [CrossRef] [PubMed] [Google Scholar]
- Blasco MA, Lee HW, Hande MP, et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 1997 ; 91 : 25–34. [CrossRef] [PubMed] [Google Scholar]
- Lee HW, Blasco MA, Gottlieb GJ, et al. Essential role of mouse telomerase in highly proliferative organs. Nature 1998 ; 392 : 569–574. [CrossRef] [PubMed] [Google Scholar]
- Alter BP, Giri N, Savage SA, Rosenberg PS. Cancer in dyskeratosis congenita. Blood 2009 ; 113 : 6549–6557. [Google Scholar]
- Hoareau-Aveilla C, Henry Y, Leblanc T. La dyskératose congénitale : une maladie méconnue due à un maintien défectueux des télomères. Med Sci (Paris) 2008 ; 24 : 390–398. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Röttinger E, Dahlin P, Martindale MQ. A framework for the establishment of a cnidarian gene regulatory network for endomesoderm specification: the inputs of b-catenin/TCF signaling. PLoS Genet 2012 ; 8 : e1003164. [CrossRef] [PubMed] [Google Scholar]
- Layden MJ, Röttinger E, Wolenski FS, et al. Microinjection of mRNA or morpholinos for reverse genetic analysis in the starlet sea anemone. Nematostella vectensis. Nat Protoc 2013 ; 8 : 924–934. [CrossRef] [Google Scholar]
- Wikramanayake AH, Hong M, Lee NP, et al. An ancient role for nuclear beta-catenin in the evolution of axial polarity and germ layer segregation. Nature 2003 ; 426 : 446–450. [CrossRef] [PubMed] [Google Scholar]
- Zimmerman B, Robb M.C.S., Genikhovich G, et al. Sea anemone genomes reveal ancestral metazoan chromosomal macrosynteny. BioRxiv 2020; 359448. doi: https://doi.org/10.1101/2020.10.30.359448. [Google Scholar]
- Magie CR, Daly M, Martindale MQ. Gastrulation in the cnidarian Nematostella vectensis occurs via invagination not ingression. Dev Biol 2007 ; 305 : 483–497. [CrossRef] [PubMed] [Google Scholar]
- Renfer E, Amon-Hassenzahl A, Steinmetz PRH, Technau U. A muscle-specific transgenic reporter line of the sea anemone Nematostella vectensis. Proc Natl Acad Sci USA 2010 ; 107 : 104–108. [CrossRef] [Google Scholar]
- Tulin S, Aguiar D, Istrail S, Smith J. A quantitative reference transcriptome for Nematostella vectensis early embryonic development: a pipeline for de novo assembly in emerging model systems. EvoDevo 2013 ; 4 : 16. [CrossRef] [PubMed] [Google Scholar]
- Vieillissement et mort : de la cellule à l’individu. Med Sci (Paris) 2020 : 36 : 1109–212. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.