Open Access
Med Sci (Paris)
Volume 37, Number 2, Février 2021
Page(s) 141 - 151
Section M/S Revues
Published online 16 February 2021
  1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders (DSM-5), 5th ed. Arlington, VA : APA, 2013. [Google Scholar]
  2. Thye MD, Bednarz HM, Herringshaw AJ, et al. The impact of atypical sensory processing on social impairments in autism spectrum disorder. Dev Cogn Neurosci 2018 ; 29 : 151–167. [CrossRef] [PubMed] [Google Scholar]
  3. Moore DJ. Acute pain experience in individuals with autism spectrum disorders: a review. Autism 2015 ; 19 : 387–399. [CrossRef] [PubMed] [Google Scholar]
  4. Summers J, Shahrami A, Cali S, et al. Self-injury in autism spectrum disorder and intellectual disability: exploring the role of reactivity to pain and sensory input. Brain Sci 2017 ; 7 : 1–16. [Google Scholar]
  5. Bourne S, Machado AG, Nagel SJ. Basic anatomy and physiology of pain pathways. Neurosurg Clin North Am 2014 ; 25 : 629–638. [CrossRef] [Google Scholar]
  6. Woolf CJ, Ma Q. Nociceptors-noxious stimulus detectors. Neuron 2007 ; 55 : 353–364. [CrossRef] [PubMed] [Google Scholar]
  7. Cordero-Erausquin M, Inquimbert P, Schlichter R, et al. Neuronal networks and nociceptive processing in the dorsal horn of the spinal cord. Neuroscience 2016 ; 338 : 230–247. [Google Scholar]
  8. Millan MJ. Descending control of pain. Prog Neurobiol 2002 ; 66 : 355–474. [Google Scholar]
  9. Garcia-Larrea L, Peyron R. Pain matrices and neuropathic pain matrices: a review. Pain 2013: S29–S43. [CrossRef] [PubMed] [Google Scholar]
  10. Wager TD, Atlas LY, Lindquist MA, et al. An fMRI-based neurologic signature of physical pain. N Engl J Med 2013 ; 368 : 1388–1397. [Google Scholar]
  11. Fründt O, Grashorn W, Schöttle D, et al. Quantitative sensory testing in adults with autism spectrum disorders. J Autism Dev Disord 2017 ; 47 : 1183–1192. [Google Scholar]
  12. De Jonckheere J, Bonhomme V, Jeanne M, et al. Physiological signal processing for individualized anti-nociception management during general anesthesia: a review. Yearbook Medical Informatics 2015 ; 10 : 95–101. [Google Scholar]
  13. Ely E, Chen-Lim ML, Carpenter KM, et al. Pain assessment of children with autism spectrum disorders. J Dev Behav Pediatr 2016 ; 37 : 53–61. [CrossRef] [PubMed] [Google Scholar]
  14. Zabalia M, Breau LM, Wood C, et al. Validation francophone de la grille d’évaluation de la douleur-déficience intellectuelle: version postopératoire. Can J Anesth 2011 ; 58 : 1016–1023. [CrossRef] [Google Scholar]
  15. Dubois A, Michelon C, Rattaz C, et al. Daily living pain assessment in children with autism: Exploratory study. Res Dev Disabil 2017 ; 62 : 238–246. [Google Scholar]
  16. Tordjman S, Anderson GM, Botbol M, et al. Pain reactivity and plasma β-endorphin in children and adolescents with autistic disorder. PLoS One 2009 ; 4 : e5289. [Google Scholar]
  17. Cascio C, McGlone F, Folger S, et al. Tactile perception in adults with autism: a multidimensional psychophysical study. J Autism Dev Disord 2008 ; 38 : 127–137. [Google Scholar]
  18. Yasuda Y, Hashimoto R, Nakae A, et al. Sensory cognitive abnormalities of pain in autism spectrum disorder: A case-control study. Ann Gen Psychiatry 2016 ; 15 : 8. [Google Scholar]
  19. Vaughan S, McGlone F, Poole H, et al. A quantitative sensory testing approach to pain in autism spectrum disorders. J Autism Dev Disord 2019 ; 50 : 1607–1620. [Google Scholar]
  20. Duerden EG, Taylor MJ, Lee M, et al. Decreased sensitivity to thermal stimuli in adolescents with autism spectrum disorder: relation to symptomatology and cognitive ability. J Pain 2015 ; 16 : 463–471. [Google Scholar]
  21. Chien YL, Wu SW, Chu CP, et al. Attenuated contact heat-evoked potentials associated with sensory and social-emotional symptoms in individuals with autism spectrum disorder. Sci Rep 2017 ; 7 : 36887. [CrossRef] [PubMed] [Google Scholar]
  22. Failla MD, Moana-Filho EJ, Essick GK, et al. Initially intact neural responses to pain in autism are diminished during sustained pain. Autism 2018 ; 22 : 669–683. [CrossRef] [PubMed] [Google Scholar]
  23. Riquelme I, Hatem SM, Montoya P. Abnormal pressure pain, touch sensitivity, proprioception, and manual dexterity in children with autism spectrum disorders. Neural Plast 2016 ; 2016 : 1723401. [CrossRef] [PubMed] [Google Scholar]
  24. Fan YT, Chen C, Chen SC, et al. Empathic arousal and social understanding in individuals with autism: evidence from fMRI and ERP measurements. Soc Cogn Affect Neurosci 2014 ; 9 : 1203–1213. [Google Scholar]
  25. Orefice LL. Peripheral somatosensory neuron dysfunction: emerging roles in autism spectrum disorders. Neuroscience 2020; 445 : 120–9. [Google Scholar]
  26. Donovan APA, Basson MA. The neuroanatomy of autism: a developmental perspective. J Anatomy 2017 ; 230 : 4–15. [CrossRef] [PubMed] [Google Scholar]
  27. Riquelme I, Hatem SM, Montoya P. Reduction of pain sensitivity after somatosensory therapy in children with autism spectrum disorders. J Abnorm Child Psychol 2018 ; 46 : 1731–1740. [Google Scholar]
  28. Orefice LL, Zimmerman AL, Chirila AM, et al. Peripheral mechanosensory neuron dysfunction underlies tactile and behavioral deficits in mouse models of ASDs. Cell 2016 ; 166 : 299–313. [CrossRef] [PubMed] [Google Scholar]
  29. Bhattacherjee A, Winter MK, Eggimann LS, et al. Motor, somatosensory, viscerosensory and metabolic impairments in a heterozygous female rat model of rett syndrome. Int J Mol Sci 2018 ; 19 : 97. [Google Scholar]
  30. Das I, Estevez MA, Sarkar AA, et al. A multifaceted approach for analyzing complex phenotypic data in rodent models of autism. Mol Autism 2019 ; 10 : 11. [CrossRef] [PubMed] [Google Scholar]
  31. Song TJ, Lan XY, Wei MP, et al. Altered behaviors and impaired synaptic function in a novel rat model with a complete Shank3 deletion. Front Cell Neurosci 2019 ; 13 : 111. [Google Scholar]
  32. Schneider T, Przewłocki R. Behavioral alterations in rats prenatally to valproic acid: animal model of autism. Neuropsychopharmacology 2005 ; 30 : 80–89. [CrossRef] [PubMed] [Google Scholar]
  33. Castro K, Baronio D, Perry IS, et al. The effect of ketogenic diet in an animal model of autism induced by prenatal exposure to valproic acid. Nutr Neurosci 2017 ; 20 : 343–350. [CrossRef] [PubMed] [Google Scholar]
  34. Bossu JL, Roux S. Les modèles animaux d’étude de l’autisme : le modèle valproate. Med Sci 2019 ; 35 : 236–243. [EDP Sciences] [Google Scholar]
  35. Wang L, Almeida LEF, Nettleton M, et al. Altered nocifensive behavior in animal models of autism spectrum disorder: The role of the nicotinic cholinergic system. Neuropharmacology 2016 ; 111 : 323–334. [CrossRef] [PubMed] [Google Scholar]
  36. Wu HF, Chen PS, Chen YJ, et al. Alleviation of N-methyl-d-aspartate receptor-dependent long-term depression via regulation of the glycogen synthase kinase-3β pathway in the amygdala of a valproic acid-induced animal model of autism. Mol Neurobiol 2017 ; 54 : 5264–5276. [CrossRef] [PubMed] [Google Scholar]
  37. Mohammadi S, Asadi-Shekaari M, Basiri M, et al. Improvement of autistic-like behaviors in adult rats prenatally exposed to valproic acid through early suppression of NMDA receptor function. Psychopharmacology 2020; 237 : 199–208. [CrossRef] [PubMed] [Google Scholar]
  38. Baronio D, Castro K, Gonchoroski T, et al. Effects of an H3R antagonist on the animal model of autism induced by prenatal exposure to valproic acid. PLoS One 2015 ; 10 : e0116363. [Google Scholar]
  39. Ko HG, Oh SB, Zhuo M, et al. Reduced acute nociception and chronic pain in Shank2-/- mice. Mol Pain 2016 ; 12 : 1744806916647056. [PubMed] [Google Scholar]
  40. Yoon SY, Kwon SG, Kim YH, et al. A critical role of spinal Shank2 proteins in NMDA-induced pain hypersensitivity. Mol Pain 2017 ; 13 : 1–9. [Google Scholar]
  41. Nakajima R, Takao K, Hattori S, et al. Comprehensive behavioral analysis of heterozygous Syngap1 knockout mice. Neuropsychopharmacol Reports 2019 ; 39 : 223–237. [CrossRef] [Google Scholar]
  42. Bhattacherjee A, Mu Y, Winter MK, et al. Neuronal cytoskeletal gene dysregulation and mechanical hypersensitivity in a rat model of Rett syndrome. Proc Natl Acad Sci USA 2017 ; 114 : E6952–E6961. [CrossRef] [Google Scholar]
  43. Han Q, Kim YH, Wang X, et al. SHANK3 deficiency impairs heat hyperalgesia and trpv1 signaling in primary sensory neurons. Neuron 2016 ; 92 : 1279–1293. [CrossRef] [PubMed] [Google Scholar]
  44. Price TJ, Rashid MH, Millecamps M, et al. Decreased nociceptive sensitization in mice lacking the fragile X mental retardation protein: role of mGluR1/5 and mTOR. J Neurosci 2007 ; 27 : 13958–13967. [CrossRef] [PubMed] [Google Scholar]
  45. Orefice LL, Mosko JR, Morency DT, et al. Targeting peripheral somatosensory neurons to improve tactile-related phenotypes in ASD models. Cell 2019 ; 178 : 867–886. [CrossRef] [PubMed] [Google Scholar]
  46. He Q, Arroyo ED, Smukowski SN, et al. Critical period inhibition of NKCC1 rectifies synapse plasticity in the somatosensory cortex and restores adult tactile response maps in fragile X mice. Mol Psychiatry 2019 ; 24 : 1732–1747. [CrossRef] [PubMed] [Google Scholar]
  47. Bird G, Silani G, Brindley R, et al. Empathic brain responses in insula are modulated by levels of alexithymia but not autism. Brain 2010 ; 133 : 1515–1525. [CrossRef] [PubMed] [Google Scholar]
  48. DeLorey TM, Sahbaie P, Hashemi E, et al. Somatosensory and sensorimotor consequences associated with the heterozygous disruption of the autism candidate gene, Gabrb3. Behav Brain Res 2011 ; 216 : 36–45. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.