Open Access
Numéro |
Med Sci (Paris)
Volume 37, Numéro 2, Février 2021
|
|
---|---|---|
Page(s) | 141 - 151 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2020280 | |
Publié en ligne | 16 février 2021 |
- American Psychiatric Association. Diagnostic and statistical manual of mental disorders (DSM-5), 5th ed. Arlington, VA : APA, 2013. [Google Scholar]
- Thye MD, Bednarz HM, Herringshaw AJ, et al. The impact of atypical sensory processing on social impairments in autism spectrum disorder. Dev Cogn Neurosci 2018 ; 29 : 151–167. [CrossRef] [PubMed] [Google Scholar]
- Moore DJ. Acute pain experience in individuals with autism spectrum disorders: a review. Autism 2015 ; 19 : 387–399. [CrossRef] [PubMed] [Google Scholar]
- Summers J, Shahrami A, Cali S, et al. Self-injury in autism spectrum disorder and intellectual disability: exploring the role of reactivity to pain and sensory input. Brain Sci 2017 ; 7 : 1–16. [Google Scholar]
- Bourne S, Machado AG, Nagel SJ. Basic anatomy and physiology of pain pathways. Neurosurg Clin North Am 2014 ; 25 : 629–638. [CrossRef] [Google Scholar]
- Woolf CJ, Ma Q. Nociceptors-noxious stimulus detectors. Neuron 2007 ; 55 : 353–364. [CrossRef] [PubMed] [Google Scholar]
- Cordero-Erausquin M, Inquimbert P, Schlichter R, et al. Neuronal networks and nociceptive processing in the dorsal horn of the spinal cord. Neuroscience 2016 ; 338 : 230–247. [Google Scholar]
- Millan MJ. Descending control of pain. Prog Neurobiol 2002 ; 66 : 355–474. [Google Scholar]
- Garcia-Larrea L, Peyron R. Pain matrices and neuropathic pain matrices: a review. Pain 2013: S29–S43. [CrossRef] [PubMed] [Google Scholar]
- Wager TD, Atlas LY, Lindquist MA, et al. An fMRI-based neurologic signature of physical pain. N Engl J Med 2013 ; 368 : 1388–1397. [Google Scholar]
- Fründt O, Grashorn W, Schöttle D, et al. Quantitative sensory testing in adults with autism spectrum disorders. J Autism Dev Disord 2017 ; 47 : 1183–1192. [Google Scholar]
- De Jonckheere J, Bonhomme V, Jeanne M, et al. Physiological signal processing for individualized anti-nociception management during general anesthesia: a review. Yearbook Medical Informatics 2015 ; 10 : 95–101. [Google Scholar]
- Ely E, Chen-Lim ML, Carpenter KM, et al. Pain assessment of children with autism spectrum disorders. J Dev Behav Pediatr 2016 ; 37 : 53–61. [CrossRef] [PubMed] [Google Scholar]
- Zabalia M, Breau LM, Wood C, et al. Validation francophone de la grille d’évaluation de la douleur-déficience intellectuelle: version postopératoire. Can J Anesth 2011 ; 58 : 1016–1023. [CrossRef] [Google Scholar]
- Dubois A, Michelon C, Rattaz C, et al. Daily living pain assessment in children with autism: Exploratory study. Res Dev Disabil 2017 ; 62 : 238–246. [Google Scholar]
- Tordjman S, Anderson GM, Botbol M, et al. Pain reactivity and plasma β-endorphin in children and adolescents with autistic disorder. PLoS One 2009 ; 4 : e5289. [Google Scholar]
- Cascio C, McGlone F, Folger S, et al. Tactile perception in adults with autism: a multidimensional psychophysical study. J Autism Dev Disord 2008 ; 38 : 127–137. [Google Scholar]
- Yasuda Y, Hashimoto R, Nakae A, et al. Sensory cognitive abnormalities of pain in autism spectrum disorder: A case-control study. Ann Gen Psychiatry 2016 ; 15 : 8. [Google Scholar]
- Vaughan S, McGlone F, Poole H, et al. A quantitative sensory testing approach to pain in autism spectrum disorders. J Autism Dev Disord 2019 ; 50 : 1607–1620. [Google Scholar]
- Duerden EG, Taylor MJ, Lee M, et al. Decreased sensitivity to thermal stimuli in adolescents with autism spectrum disorder: relation to symptomatology and cognitive ability. J Pain 2015 ; 16 : 463–471. [Google Scholar]
- Chien YL, Wu SW, Chu CP, et al. Attenuated contact heat-evoked potentials associated with sensory and social-emotional symptoms in individuals with autism spectrum disorder. Sci Rep 2017 ; 7 : 36887. [CrossRef] [PubMed] [Google Scholar]
- Failla MD, Moana-Filho EJ, Essick GK, et al. Initially intact neural responses to pain in autism are diminished during sustained pain. Autism 2018 ; 22 : 669–683. [CrossRef] [PubMed] [Google Scholar]
- Riquelme I, Hatem SM, Montoya P. Abnormal pressure pain, touch sensitivity, proprioception, and manual dexterity in children with autism spectrum disorders. Neural Plast 2016 ; 2016 : 1723401. [CrossRef] [PubMed] [Google Scholar]
- Fan YT, Chen C, Chen SC, et al. Empathic arousal and social understanding in individuals with autism: evidence from fMRI and ERP measurements. Soc Cogn Affect Neurosci 2014 ; 9 : 1203–1213. [Google Scholar]
- Orefice LL. Peripheral somatosensory neuron dysfunction: emerging roles in autism spectrum disorders. Neuroscience 2020; 445 : 120–9. [Google Scholar]
- Donovan APA, Basson MA. The neuroanatomy of autism: a developmental perspective. J Anatomy 2017 ; 230 : 4–15. [CrossRef] [PubMed] [Google Scholar]
- Riquelme I, Hatem SM, Montoya P. Reduction of pain sensitivity after somatosensory therapy in children with autism spectrum disorders. J Abnorm Child Psychol 2018 ; 46 : 1731–1740. [Google Scholar]
- Orefice LL, Zimmerman AL, Chirila AM, et al. Peripheral mechanosensory neuron dysfunction underlies tactile and behavioral deficits in mouse models of ASDs. Cell 2016 ; 166 : 299–313. [CrossRef] [PubMed] [Google Scholar]
- Bhattacherjee A, Winter MK, Eggimann LS, et al. Motor, somatosensory, viscerosensory and metabolic impairments in a heterozygous female rat model of rett syndrome. Int J Mol Sci 2018 ; 19 : 97. [Google Scholar]
- Das I, Estevez MA, Sarkar AA, et al. A multifaceted approach for analyzing complex phenotypic data in rodent models of autism. Mol Autism 2019 ; 10 : 11. [CrossRef] [PubMed] [Google Scholar]
- Song TJ, Lan XY, Wei MP, et al. Altered behaviors and impaired synaptic function in a novel rat model with a complete Shank3 deletion. Front Cell Neurosci 2019 ; 13 : 111. [Google Scholar]
- Schneider T, Przewłocki R. Behavioral alterations in rats prenatally to valproic acid: animal model of autism. Neuropsychopharmacology 2005 ; 30 : 80–89. [CrossRef] [PubMed] [Google Scholar]
- Castro K, Baronio D, Perry IS, et al. The effect of ketogenic diet in an animal model of autism induced by prenatal exposure to valproic acid. Nutr Neurosci 2017 ; 20 : 343–350. [CrossRef] [PubMed] [Google Scholar]
- Bossu JL, Roux S. Les modèles animaux d’étude de l’autisme : le modèle valproate. Med Sci 2019 ; 35 : 236–243. [EDP Sciences] [Google Scholar]
- Wang L, Almeida LEF, Nettleton M, et al. Altered nocifensive behavior in animal models of autism spectrum disorder: The role of the nicotinic cholinergic system. Neuropharmacology 2016 ; 111 : 323–334. [CrossRef] [PubMed] [Google Scholar]
- Wu HF, Chen PS, Chen YJ, et al. Alleviation of N-methyl-d-aspartate receptor-dependent long-term depression via regulation of the glycogen synthase kinase-3β pathway in the amygdala of a valproic acid-induced animal model of autism. Mol Neurobiol 2017 ; 54 : 5264–5276. [CrossRef] [PubMed] [Google Scholar]
- Mohammadi S, Asadi-Shekaari M, Basiri M, et al. Improvement of autistic-like behaviors in adult rats prenatally exposed to valproic acid through early suppression of NMDA receptor function. Psychopharmacology 2020; 237 : 199–208. [CrossRef] [PubMed] [Google Scholar]
- Baronio D, Castro K, Gonchoroski T, et al. Effects of an H3R antagonist on the animal model of autism induced by prenatal exposure to valproic acid. PLoS One 2015 ; 10 : e0116363. [Google Scholar]
- Ko HG, Oh SB, Zhuo M, et al. Reduced acute nociception and chronic pain in Shank2-/- mice. Mol Pain 2016 ; 12 : 1744806916647056. [PubMed] [Google Scholar]
- Yoon SY, Kwon SG, Kim YH, et al. A critical role of spinal Shank2 proteins in NMDA-induced pain hypersensitivity. Mol Pain 2017 ; 13 : 1–9. [Google Scholar]
- Nakajima R, Takao K, Hattori S, et al. Comprehensive behavioral analysis of heterozygous Syngap1 knockout mice. Neuropsychopharmacol Reports 2019 ; 39 : 223–237. [CrossRef] [Google Scholar]
- Bhattacherjee A, Mu Y, Winter MK, et al. Neuronal cytoskeletal gene dysregulation and mechanical hypersensitivity in a rat model of Rett syndrome. Proc Natl Acad Sci USA 2017 ; 114 : E6952–E6961. [CrossRef] [Google Scholar]
- Han Q, Kim YH, Wang X, et al. SHANK3 deficiency impairs heat hyperalgesia and trpv1 signaling in primary sensory neurons. Neuron 2016 ; 92 : 1279–1293. [CrossRef] [PubMed] [Google Scholar]
- Price TJ, Rashid MH, Millecamps M, et al. Decreased nociceptive sensitization in mice lacking the fragile X mental retardation protein: role of mGluR1/5 and mTOR. J Neurosci 2007 ; 27 : 13958–13967. [CrossRef] [PubMed] [Google Scholar]
- Orefice LL, Mosko JR, Morency DT, et al. Targeting peripheral somatosensory neurons to improve tactile-related phenotypes in ASD models. Cell 2019 ; 178 : 867–886. [CrossRef] [PubMed] [Google Scholar]
- He Q, Arroyo ED, Smukowski SN, et al. Critical period inhibition of NKCC1 rectifies synapse plasticity in the somatosensory cortex and restores adult tactile response maps in fragile X mice. Mol Psychiatry 2019 ; 24 : 1732–1747. [CrossRef] [PubMed] [Google Scholar]
- Bird G, Silani G, Brindley R, et al. Empathic brain responses in insula are modulated by levels of alexithymia but not autism. Brain 2010 ; 133 : 1515–1525. [CrossRef] [PubMed] [Google Scholar]
- DeLorey TM, Sahbaie P, Hashemi E, et al. Somatosensory and sensorimotor consequences associated with the heterozygous disruption of the autism candidate gene, Gabrb3. Behav Brain Res 2011 ; 216 : 36–45. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.