Open Access
Numéro |
Med Sci (Paris)
Volume 37, Numéro 2, Février 2021
|
|
---|---|---|
Page(s) | 152 - 158 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2020278 | |
Publié en ligne | 16 février 2021 |
- Guénet JL, Panthier JJ, Avner P, et al. L’héritage de Mary F. Lyon (1925–2014). Med Sci (Paris) 2015 ; 31 : 687–689. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Chu C, Zhang QC, da Rocha ST, et al. Systematic discovery of Xist RNA binding proteins. Cell 2015 ; 161 : 404–416. [CrossRef] [PubMed] [Google Scholar]
- McHugh CA, Chen CK, Chow A, et al. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 2015 ; 521 : 232–236. [CrossRef] [PubMed] [Google Scholar]
- Minajigi A, Froberg J, Wei C, et al. Chromosomes. A comprehensive Xist interactome reveals cohesin repulsion and an RNA-directed chromosome conformation. Science 2015; 349 : 10.1126/science.aab2276 aab2276. [Google Scholar]
- Monfort A, Di Minin G, Postlmayr A, et al. Identification of spen as a crucial factor for Xist function through forward genetic screening in haploid embryonic stem cells. Cell Rep 2015 ; 12 : 554–561. [CrossRef] [PubMed] [Google Scholar]
- Dossin F, Pinheiro I, Żylicz JJ, et al. SPEN integrates transcriptional and epigenetic control of X-inactivation. Nature 2020; 578 : 455–60. [CrossRef] [PubMed] [Google Scholar]
- Żylicz JJ, Bousard A, Žumer K, et al. The implication of early chromatin changes in X chromosome inactivation. Cell 2019; 176 : 182–97.e23. [CrossRef] [PubMed] [Google Scholar]
- Bousard A, Raposo AC, Żylicz JJ, et al. The role of Xist-mediated Polycomb recruitment in the initiation of X-chromosome inactivation. EMBO Rep 2019 ; 20 : e48019. [CrossRef] [PubMed] [Google Scholar]
- Pintacuda G, Wei G, Roustan C, et al. hnRNPK recruits PCGF3/5-PRC1 to the Xist RNA B-repeat to establish polycomb-mediated chromosomal silencing. Mol Cell 2017 ; 68 : 955–969 e10. [Google Scholar]
- Almeida M, Pintacuda G, Masui O, et al. PCGF3/5-PRC1 initiates Polycomb recruitment in X chromosome inactivation. Science 2017 ; 356 : 1081–1084. [Google Scholar]
- Gendrel AV, Apedaile A, Coker H, et al. Smchd1-dependent and independent pathways determine developmental dynamics of Cpg island methylation on the inactive X chromosome. Dev Cell 2012 ; 23 : 265–279. [CrossRef] [PubMed] [Google Scholar]
- Gdula MR, Nesterova TB, Pintacuda G, et al. The non-canonical SMC protein SmcHD1 antagonises TAD formation and compartmentalisation on the inactive X chromosome. Nat Commun 2019 ; 10 : 30. [Google Scholar]
- Chen CK, Blanco M, Jackson C, et al. Xist recruits the X chromosome to the nuclear lamina to enable chromosome-wide silencing. Science 2016 ; 354 : 468–472. [Google Scholar]
- Nesterova TB, Wei G, Coker H, et al. Systematic allelic analysis defines the interplay of key pathways in X chromosome inactivation. Nat Commun 2019 ; 10 : 1–15. [Google Scholar]
- Jeon Y, Lee JT. YY1 Tethers Xist RNA to the inactive X nucleation center. Cell 2011 ; 146 : 119–133. [CrossRef] [PubMed] [Google Scholar]
- Yamada N, Hasegawa Y, Yue M, et al. Xist exon 7 contributes to the stable localization of Xist RNA on the inactive X-chromosome. PLoS Genet 2015 ; 11 : e1005430. [CrossRef] [PubMed] [Google Scholar]
- Marahrens Y, Panning B, Dausman J, et al. Xist-deficient mice are defective in dosage compensation but not spermatogenesis. Genes Dev 1997 ; 11 : 156–166. [CrossRef] [PubMed] [Google Scholar]
- Czermin΄ski JT, Lawrence JB. Silencing trisomy 21 with XIST in neural stem cells promotes neuronal differentiation. Dev Cell 2020; 52 : 294–308.e3. [CrossRef] [PubMed] [Google Scholar]
- Wutz A, Jaenisch R. A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation. Mol Cell 2000 ; 5 : 695–705. [CrossRef] [PubMed] [Google Scholar]
- Briggs SF, Dominguez AA, Chavez SL, et al. Single-cell XIST expression in human preimplantation embryos and newly reprogrammed female induced pluripotent stem cells: XIST in human preimplantation embryos and iPSCs. Stem Cells 2015 ; 33 : 1771–1781. [CrossRef] [PubMed] [Google Scholar]
- Okamoto I, Patrat C, Thépot D, et al. Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development. Nature 2011 ; 472 : 370–374. [CrossRef] [PubMed] [Google Scholar]
- Petropoulos S, Edsgärd D, Reinius B, et al. Single-cell RNA-Seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell 2016 ; 165 : 1012–1026. [CrossRef] [PubMed] [Google Scholar]
- Vallot C, Patrat C, Collier AJ, et al. XACT noncoding RNA competes with XIST in the control of X chromosome activity during human early development. Cell Stem Cell 2017 ; 20 : 102–111. [Google Scholar]
- Moreira de Mello JC, Fernandes GR, Vibranovski MD, et al. Early X chromosome inactivation during human preimplantation development revealed by single-cell RNA-sequencing. Sci Rep 2017 ; 7 : 1–12. [CrossRef] [PubMed] [Google Scholar]
- Zhou F, Wang R, Yuan P, et al. Reconstituting the transcriptome and DNA methylome landscapes of human implantation. Nature 2019 ; 572 : 660–664. [CrossRef] [PubMed] [Google Scholar]
- Vallot C, Rougeulle C. Inactivation du chromosome X chez l’humain: XACT et XIST, à chacun son chromosome. Med Sci (Paris) 2013 ; 29 : 223–225. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Vallot C, Huret C, Lesecque Y, et al. XACT, a long noncoding transcript coating the active X chromosome in human pluripotent cells. Nat Genet 2013 ; 45 : 239–241. [Google Scholar]
- Casanova M, Moscatelli M, Chauvière LÉ, et al. A primate-specific retroviral enhancer wires the XACT lncRNA into the core pluripotency network in humans. Nat Commun 2019 ; 10 : 5652. [Google Scholar]
- Csankovszki G, Panning B, Bates B, et al. Conditional deletion of Xist disrupts histone macroH2A localization but not maintenance of X inactivation. Nat Genet 1999 ; 22 : 323–324. [Google Scholar]
- Carrel L, Brown CJ. When the Lyon(ized chromosome) roars: ongoing expression from an inactive X chromosome. Philos Trans R Soc Lond B Biol Sci 2017 ; 372 : [Google Scholar]
- Libert C, Dejager L, Pinheiro I. The X chromosome in immune functions: when a chromosome makes the difference. Nat Rev Immunol 2010 ; 10 : 594–604. [CrossRef] [PubMed] [Google Scholar]
- Syrett CM, Anguera MC. When the balance is broken: X-linked gene dosage from two X chromosomes and female-biased autoimmunity. J Leukoc Biol 2019 ; 106 : 919–932. [Google Scholar]
- Souyris M, Cenac C, Azar P, et al. TLR7 escapes X chromosome inactivation in immune cells. Sci Immunol 2018; 3 : eaap8855. [CrossRef] [PubMed] [Google Scholar]
- Souyris M, Mejía JE, Chaumeil J, et al. Female predisposition to TLR7-driven autoimmunity: gene dosage and the escape from X chromosome inactivation. Semin Immunopathol 2019 ; 41 : 153–164. [Google Scholar]
- Chaligné R, Popova T, Mendoza-Parra M-A, et al. The inactive X chromosome is epigenetically unstable and transcriptionally labile in breast cancer. Genome Res 2015 ; 25 : 488–503. [CrossRef] [PubMed] [Google Scholar]
- Sirchia SM, Tabano S, Monti L, et al. Misbehaviour of XIST RNA in breast cancer cells. PLoS One 2009 ; 4 : e5559. [Google Scholar]
- Kawakami T, Zhang C, Taniguchi T, et al. Characterization of loss-of-inactive X in Klinefelter syndrome and female-derived cancer cells. Oncogene 2004 ; 23 : 6163–6169. [Google Scholar]
- Yildirim E, Kirby JE, Brown DE, et al. Xist RNA is a potent suppressor of hematologic cancer in mice. Cell 2013 ; 152 : 727–742. [CrossRef] [PubMed] [Google Scholar]
- Fang H, Disteche CM, Berletch JB. X Inactivation and escape: epigenetic and structural features. Front Cell Dev Biol 2019 ; 7 : 219. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.