Open Access
Issue
Med Sci (Paris)
Volume 37, Number 2, Février 2021
Page(s) 135 - 140
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2020277
Published online 16 February 2021
  1. Fraisier C, Rodrigues R, Vu Hai V, et al. Hepatocyte pathway alterations in response to in vitro Crimean Congo hemorrhagic fever virus infection. Virus Res 2014 ; 179 : 187–203. [CrossRef] [PubMed] [Google Scholar]
  2. Connolly-Andersen AM, Douagi I, Kraus AA, et al. Crimean Congo hemorrhagic fever virus infects human monocyte-derived dendritic cells. Virology 2009 ; 390 : 157–162. [CrossRef] [PubMed] [Google Scholar]
  3. Connolly-Andersen A-M, Moll G, Andersson C, et al. Crimean-Congo hemorrhagic fever virus activates endothelial cells. J Virol 2011 ; 85 : 7766–7774. [CrossRef] [PubMed] [Google Scholar]
  4. Xiao X, Feng Y, Zhu Z, et al. Identification of a putative Crimean-Congo hemorrhagic fever virus entry factor. Biochem Biophys Res Commun 2011 ; 411 : 253–258. [Google Scholar]
  5. Hoogstraal H. The epidemiology of tick-borne Crimean-Congo hemorrhagic fever in Asia, Europe, and Africa. J Med Entomol 1979 ; 15 : 307–417. [CrossRef] [PubMed] [Google Scholar]
  6. Estrada-Peña A, Venzal JM. Climate niches of tick species in the Mediterranean region: modeling of occurrence data, distributional constraints, and impact of climate change. J Med Entomol 2007 ; 44 : 1130–1138. [CrossRef] [PubMed] [Google Scholar]
  7. Xia H, Beck AS, Gargili A, et al. Transstadial transmission and long-term association of crimean-congo hemorrhagic fever virus in ticks shapes genome plasticity. Sci Rep 2016 ; 6 : 1–12. [CrossRef] [PubMed] [Google Scholar]
  8. Kar S, Rodriguez SE, Akyildiz G, et al. Crimean-Congo hemorrhagic fever virus in tortoises and Hyalomma aegyptium ticks in East Thrace, Turkey: potential of a cryptic transmission cycle. Parasit Vectors 2020; 13 : 201. [Google Scholar]
  9. Telmadarraiy Z, Chinikar S, Vatandoost H, et al. Vectors of Crimean Congo hemorrhagic fever virus in Iran. J Arthropod-Borne Dis 2015 ; 9 : 137–147. [Google Scholar]
  10. Sureau P, Klein JM, Casals J, et al. Isolement des virus thogoto, wad medani, wanowrie et de la fièvre hémorragique de crimée-congo en Iran à partir de tiques d’animaux domestiques. Ann Inst Pasteur Virol 1980 ; 131 : 185–200. [Google Scholar]
  11. Tahmasebi F, Ghiasi SM, Mostafavi E, et al. Molecular epidemiology of Crimean- Congo hemorrhagic fever virus genome isolated from ticks of Hamadan province of Iran. J Vector Borne Dis 2010 ; 47 : 211–216. [PubMed] [Google Scholar]
  12. Shepherd AJ, Swanepoel R, Cornel AJ, et al. Experimental studies on the replication and transmission of Crimean-Congo hemorrhagic fever virus in some African tick species. Am J Trop Med Hyg 1989 ; 40 : 326–331. [CrossRef] [PubMed] [Google Scholar]
  13. Robert LL, Debboun M. 146 arthropods of public health importance. In: Ryan ET, Hill DR, Solomon T, et al., eds. Hunter’s tropical medicine and emerging infectious diseases, 10th ed. London : Content Repository Only!, 2020 : 1055–62. [CrossRef] [Google Scholar]
  14. Dickson DL, Turell MJ. Replication and tissue tropisms of Crimean-Congo hemorrhagic fever virus in experimentally infected adult Hyalomma truncatum (Acari: Ixodidae). J Med Entomol 1992 ; 29 : 767–773. [CrossRef] [PubMed] [Google Scholar]
  15. Ergönül O. Crimean-Congo haemorrhagic fever. Lancet Infect Di. 2006 ; 6 : 203–214. [Google Scholar]
  16. Swanepoel R, Gill DE, Shepherd AJ, et al. The clinical pathology of Crimean-Congo hemorrhagic fever. Rev Infect Dis 1989 ; 11 : suppl 4 S794–S800. [Google Scholar]
  17. Papa A, Tsergouli K, Çag˘layık DY, et al. Cytokines as biomarkers of Crimean-Congo hemorrhagic fever. J Med Virol 2016 ; 88 : 21–27. [CrossRef] [PubMed] [Google Scholar]
  18. Onguru P, Dagdas S, Bodur H, et al. Coagulopathy parameters in patients with Crimean-Congo hemorrhagic fever and its relation with mortality. J Clin Lab Anal 2010 ; 24 : 163–166. [CrossRef] [PubMed] [Google Scholar]
  19. Ergonul O, Tuncbilek S, Baykam N, et al. Evaluation of serum levels of interleukin (IL)-6, IL-10, and tumor necrosis factor-alpha in patients with Crimean-Congo hemorrhagic fever. J Infect Dis 2006 ; 193 : 941–944. [CrossRef] [PubMed] [Google Scholar]
  20. Leblebicioglu H, Sunbul M, Guner R, et al. Healthcare-associated Crimean-Congo haemorrhagic fever in Turkey, 2002–2014: a multicentre retrospective cross-sectional study. Clin Microbiol Infect 2016; 22 : 387.e1-387.e4. [Google Scholar]
  21. Johnson S, Henschke N, Maayan N, et al. Ribavirin for treating Crimean Congo haemorrhagic fever. Cochrane Database Syst Rev 2018; 6 : CD012713. [PubMed] [Google Scholar]
  22. Espy N, Pérez-Sautu U, Ramírez de Arellano E, et al. Ribavirin had demonstrable effects on the Crimean-Congo hemorrhagic fever virus (CCHF) population and load in a patient with cchf infection. J Infect Dis 2018 ; 217 : 1952–1956. [CrossRef] [PubMed] [Google Scholar]
  23. Golden JW, Shoemaker CJ, Lindquist ME, et al. GP38-targeting monoclonal antibodies protect adult mice against lethal Crimean-Congo hemorrhagic fever virus infection. Sci Adv 2019; 5 : eaaw9535. [CrossRef] [PubMed] [Google Scholar]
  24. Tipih T, Burt FJ. Crimean-Congo hemorrhagic fever virus: advances in vaccine development. BioRes Open Access 2020; 9 : 137–50. [CrossRef] [PubMed] [Google Scholar]
  25. Chumakov MP. Studies of virus haemorrhagic fevers. J Hyg Epidemiol Microbiol Immunol 1963 ; 7 : 125–135. [PubMed] [Google Scholar]
  26. Casals J. Antigenic similarity between the virus causing Crimean hemorrhagic fever and Congo virus. Proc Soc Exp Biol Med 1969 ; 131 : 233–236. [CrossRef] [PubMed] [Google Scholar]
  27. Chumakov MP, Smirnova SE, Tkachenko EA. Relationship between strains of Crimean haemorrhagic fever and Congo viruses. Acta Virol 1970 ; 14 : 82–85. [PubMed] [Google Scholar]
  28. Leblebicioglu H, Ozaras R, Irmak H, et al. Crimean-Congo hemorrhagic fever in Turkey: current status and future challenges. Antiviral Res 2016 ; 126 : 21–34. [CrossRef] [PubMed] [Google Scholar]
  29. Grandi G, Chitimia-Dobler L, Choklikitumnuey P, et al. First records of adult Hyalomma marginatum and H. rufipes ticks (Acari: Ixodidae) in Sweden. Ticks Tick-Borne Dis 2020; 11 : 101403. [CrossRef] [Google Scholar]
  30. Chitimia-Dobler L, Nava S, Bestehorn M, et al. First detection of Hyalomma rufipes in Germany. Ticks Tick-Borne Dis 2016 ; 7 : 1135–1138. [CrossRef] [Google Scholar]
  31. Chitimia-Dobler L, Schaper S, Rieß R, et al. Imported Hyalomma ticks in Germany in 2018. Parasit Vectors 2019 ; 12 : 134. [Google Scholar]
  32. Perez-Eid C. Les tiques : identification, biologie, importance médicale et vétérinaire. Paris: Lavoisier, 2007: 316 p [Google Scholar]
  33. Vial L, Stachurski F, Leblond A, et al. Strong evidence for the presence of the tick Hyalomma marginatum Koch, 1844 in southern continental France. Ticks Tick-Borne Dis 2016 ; 7 : 1162–1167. [CrossRef] [Google Scholar]
  34. Stachurski F, Vial L. Installation de la tique Hyalomma marginatum, vectrice du virus de la fièvre hémorragique de Crimée-Congo, en France continentale. Bull Epidémiologique 2018 ; 84 : 37–41. [Google Scholar]
  35. Morel PC. Hyalomma (Acaridae, Ixodidae) in France. Ann Parasitol Hum Comp 1959 ; 34 : 552–555. [PubMed] [Google Scholar]
  36. Negredo A, Habela MÁ, de Arellano ER, et al. Survey of Crimean-Congo hemorrhagic fever enzootic focus, Spain, 2011–2015. Emerg Infect Dis 2019 ; 25 : 1177–1184. [CrossRef] [PubMed] [Google Scholar]
  37. Promed. PRO/AH/EDR> Crimean-Congo hem. fever-Europe: Turkey, Spain Promedmail archive 20200617.7466015. 2020. [Google Scholar]
  38. Monsalve Arteaga L, Muñoz Bellido JL, Vieira Lista MC, et al. Crimean-Congo haemorrhagic fever (CCHF) virus-specific antibody detection in blood donors, Castile-León, Spain, summer 2017 and 2018. Euro Surveill Bull Eur Sur Mal Transm Eur Commun Dis Bull 2020; 25 1900507. [Google Scholar]
  39. Grech-Angelini S, Lancelot R, Ferraris O, et al. Crimean-Congo hemorrhagic fever virus antibodies among livestock on Corsica, France, 2014–2016. Emerg Infect Dis 2020; 26 : 1041–4. [CrossRef] [PubMed] [Google Scholar]
  40. Grech-Angelini S, Stachurski F, Vayssier-Taussat M, et al. Tick-borne pathogens in ticks (Acari: Ixodidae) collected from various domestic and wild hosts in Corsica (France), a Mediterranean island environment. Transbound Emerg Dis 2020; 67 : 745–57. [CrossRef] [PubMed] [Google Scholar]
  41. de Arellano ER, Hernández L, Goyanes MJ, et al. Phylogenetic characterization of Crimean-Congo hemorrhagic fever virus. Spain. Emerg Infect Dis 2017 ; 23 : 2078–2080. [CrossRef] [Google Scholar]
  42. Palomar AM, Portillo A, Santibáñez P, et al. Crimean-Congo Hemorrhagic Fever Virus in Ticks from Migratory Birds. Morocco. Emerg Infect Dis 2013 ; 19 : 260–263. [CrossRef] [PubMed] [Google Scholar]
  43. Mancuso E, Toma L, Polci A, et al. Crimean-Congo hemorrhagic fever virus genome in tick from migratory bird. Italy. Emerg Infect Dis 2019 ; 25 : 1418–1420. [CrossRef] [PubMed] [Google Scholar]
  44. Papa A, Bino S, Llagami A, et al. Crimean-Congo hemorrhagic fever in Albania, 2001. Eur J Clin Microbiol Infect Dis 2002 ; 21 : 603–606. [CrossRef] [PubMed] [Google Scholar]
  45. Dinçer E, Brinkmann A, Hekimog˘lu O, et al. Generic amplification and next generation sequencing reveal Crimean-Congo hemorrhagic fever virus AP92-like strain and distinct tick phleboviruses in Anatolia. Turkey. Parasit Vectors 2017 ; 10 : 335. [CrossRef] [Google Scholar]
  46. Kautman M, Tiar G, Papa A, et al. AP92-like Crimean-Congo hemorrhagic fever virus in Hyalomma aegyptium ticks. Algeria. Emerg Infect Dis 2016 ; 22 : 354–356. [CrossRef] [PubMed] [Google Scholar]
  47. Papa A, Sidira P, Tsatsaris A. Spatial cluster analysis of Crimean-Congo hemorrhagic fever virus seroprevalence in humans. Greece. Parasite Epidemiol Control 2016 ; 1 : 211–218. [CrossRef] [Google Scholar]
  48. Sidira P, Nikza P, Danis K, et al. Prevalence of Crimean-Congo hemorrhagic fever virus antibodies in Greek residents in the area where the AP92 strain was isolated. Hippokratia 2013 ; 17 : 322–325. [PubMed] [Google Scholar]
  49. Bodur H, Akinci E, Ascioglu S, et al. Subclinical Infections with Crimean-Congo hemorrhagic fever virus. Turkey. Emerg Infect Dis 2012 ; 18 : 640–642. [Google Scholar]
  50. Spengler JR, Estrada-Peña A. Host preferences support the prominent role of Hyalomma ticks in the ecology of Crimean-Congo hemorrhagic fever. PLoS Negl Trop Dis 2018 ; 12 : e0006248. [CrossRef] [PubMed] [Google Scholar]
  51. Manjunathachar HV, Kumar B, Saravanan BC, et al. Identification and characterization of vaccine candidates against Hyalomma anatolicum-vector of Crimean-Congo haemorrhagic fever virus. Transbound Emerg Dis 2019 ; 66 : 422–434. [CrossRef] [PubMed] [Google Scholar]
  52. Rego ROM, Trentelman JJA, Anguita J, et al. Counterattacking the tick bite: towards a rational design of anti-tick vaccines targeting pathogen transmission. Parasit Vectors 2019 ; 12 : 229. [Google Scholar]
  53. Crimean-Congo haemorrhagic fever. https://www.who.int/health-topics/crimean-congo-haemorrhagic-fever/. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.