Open Access
Med Sci (Paris)
Volume 37, Number 1, Janvier 2021
Page(s) 47 - 52
Section M/S Revues
Published online 25 January 2021
  1. Busch W.. Aus der Sitzung der medicinischen section vom 13 november 1867. Berlin Klin Wochenschr 1868 ; 5 : 137. [Google Scholar]
  2. Fehleisen F.. Ueber die züchtung der erysipelkokken auf künstlichem nährboden und ihre übertragbarkeit auf den menschen. Dtsch Med Wochenschr 1882 ; 8 : 553–554. [CrossRef] [Google Scholar]
  3. Coley WB. The treatment of malignant tumors by repeated inoculations of erysipelas. with a report of ten original cases. Am J Med Sci 1893 ; 105 : 487–511. [CrossRef] [Google Scholar]
  4. Coley WB. Late results of the treatment of inoperable sarcoma by the mixed toxins of erysipelas and bacillus prodigiosus. Trans Southern Surg Gynecol Ass 1906 ; 18 : 197. [Google Scholar]
  5. Coley WB. The treatment of inoperable sarcoma by bacterial toxins (the mixed toxins of the Streptococcus erysipelas and the Bacillus prodigiosus). Proc R Soc Med 1910; 3 (Surg Sect) : 1–48. [PubMed] [Google Scholar]
  6. Old LJ, Clark DA, Benacerraf B. Effect of bacillus Calmette Guérin infection on transplanted tumors in the mouse. Nature 1959 ; 184 : 291–292. [CrossRef] [PubMed] [Google Scholar]
  7. Mathé G, Amiel JL, Schwarzenberg L, et al. Active immunotherapy for acute lymphoblastic leukaemia. Lancet 1969 ; 1 : 697–699. [CrossRef] [PubMed] [Google Scholar]
  8. Morales A, Eidinger D, Bruce AW. Intracavity bacillus Calmette-Guérin in the treatment of superficial bladder tumors. J Urol 1976 ; 116 : 180–183. [CrossRef] [PubMed] [Google Scholar]
  9. Babjuk M.. European association of urology guidelines on non muscle-invasive bladder cancer (Tat1 and carcinoma in situ) - 2019 update. Eur Urology 2019 ; 76 : 639–657. [CrossRef] [Google Scholar]
  10. Remington JS, Merigan TC. Resistance to virus challenge in mice infected with protozoa or bacteria. Proc Soc Exp Biol Med 1969 ; 131 : 1184–1188. [CrossRef] [PubMed] [Google Scholar]
  11. Ruskin J, Remington JS. Immunity and intracellular infection: resistance to bacteria in mice infected with a protozoan. Science 1968 ; 160 : 72–74. [CrossRef] [Google Scholar]
  12. Mahmoud AA, Warren KS, Strickland GT. Acquired resistance to infection with Schistosoma mansoni induced by Toxoplasma gondii. Nature 1976 ; 263 : 56–57. [CrossRef] [PubMed] [Google Scholar]
  13. Gentry LO, Remington JS. Resistance against Cryptococcus conferred by intracellular bacteria and protozoa. J Infect Dis 1971 ; 123 : 22–31. [CrossRef] [PubMed] [Google Scholar]
  14. Hibbs JB, Jr, Lambert LH, Jr, Remington JS. Resistance to murine tumors conferred by chronic infection with intracellular protozoa, Toxoplasma gondii and Besnoitia jellisoni. J Infect Dis 1971 ; 124 : 587–592. [CrossRef] [PubMed] [Google Scholar]
  15. Liang M. Oncorine, the world first oncolytic virus medicine and its update in China, Curr Cancer Drug Targets 2018; 18 : 171–6. [CrossRef] [PubMed] [Google Scholar]
  16. Pol J, Kroemer G, Galluzzi L. First oncolytic virus approved for melanoma immunotherapy, Oncoimmunol 2016; 5 : e1115641. [CrossRef] [Google Scholar]
  17. Lan Q, Xia S, Wang Q, et al. Development of oncolytic virotherapy: from genetic modification to combination therapy. Front Med 2020; 14 : 160–84. [CrossRef] [Google Scholar]
  18. Feuer R, Whitton JL. Preferential coxsackievirus replication in proliferating/activated cells: implications for virus tropism, persistence, and pathogenesis. Curr Top Microbiol Immunol 2008 ; 323 : 149–173. [PubMed] [Google Scholar]
  19. Sedighi M, Zahedi Bialvaei A, Hamblin MR, et al. Therapeutic bacteria to combat cancer; current advances, challenges, and opportunities. Cancer Med 2019 ; 8 : 3167–3181. [Google Scholar]
  20. Liang K, Liu Q, Li P, et al. Genetically engineered Salmonella typhimurium: recent advances in cancer therapy. Cancer Lett 2019 ; 448 : 168–181. [CrossRef] [Google Scholar]
  21. Kuol N, Stojanovska L, Nurgali K, Apostolopoulos V. The mechanisms tumor cells utilize to evade the host’s immune system. Maturitas 2017 ; 105 : 8–15. [CrossRef] [PubMed] [Google Scholar]
  22. Desjardins A, Gromeier M, Herndon JE 2nd, et al. Recurrent glioblastoma treated with recombinant poliovirus. N Engl J Med 2018 ; 379 : 150–161. [CrossRef] [Google Scholar]
  23. Chaurasiya S, Fong Y, Warner SG. Optimizing oncolytic viral design to enhance antitumor efficacy: progress and challenges. Cancers (Basel) 2020; 12 : 1699. [CrossRef] [Google Scholar]
  24. Junqueira C, Santos LI, Galvão-Filho B, et al. Trypanosoma cruzi as an effective cancer antigen delivery vector. Proc Natl Acad Sci USA 2011 ; 108 : 19695–19700. [CrossRef] [Google Scholar]
  25. Foloppe J, Kempf J, Futin N, et al. The Enhanced tumor specificity of tg6002, an armed oncolytic vaccinia virus deleted in two genes involved in nucleotide metabolism. Mol Ther Oncolytics 2019 ; 14 : 1–14. [CrossRef] [Google Scholar]
  26. Liang K, Liu Q, Li P, Luo H, Wang H, Kong Q. Genetically engineered Salmonella typhimurium: recent advances in cancer therapy. Cancer Lett 2019 ; 448 : 168–181. [CrossRef] [Google Scholar]
  27. Ho CL, Tan HQ, Chua KJ, et al. Engineered commensal microbes for diet-mediated colorectal-cancer chemoprevention [published correction appears in Nat Biomed Eng 2020; 4: 754–5]. Nat Biomed Eng 2018 ; 2 : 27–37. [CrossRef] [PubMed] [Google Scholar]
  28. Dos Santos LI, Galvão-Filho B, de Faria PC, et al. Blockade of CTLA-4 promotes the development of effector CD8+ T lymphocytes and the therapeutic effect of vaccination with an attenuated protozoan expressing NY-ESO-1. Cancer Immunol Immunother 2015 ; 64 : 311–323. [CrossRef] [PubMed] [Google Scholar]
  29. Hassan R, Alley E, Kindler H, et al. Clinical response of live-attenuated, listeria monocytogenes expressing mesothelin (Crs-207) with chemotherapy in patients with malignant pleural mesothelioma. Clin Cancer Res 2019 ; 25 : 5787–5798. [CrossRef] [PubMed] [Google Scholar]
  30. Lu RM, Hwang YC, Liu IJ, et al. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci 2020; 27 : 1. [CrossRef] [PubMed] [Google Scholar]
  31. Kleinpeter P, Fend L, Thioudellet C, et al. Vectorization in an oncolytic vaccinia virus of an antibody, a Fab and a scFv against programmed cell death-1 (PD-1) allows their intratumoral delivery and an improved tumor-growth inhibition. Oncoimmunol 2016 ; 5 : e1220467. [CrossRef] [Google Scholar]
  32. Chowdhury S, Castro S, Coker C, et al. Programmable bacteria induce durable tumor regression and systemic antitumor immunity. Nat Med 2019 ; 25 : 1057–1063. [CrossRef] [PubMed] [Google Scholar]
  33. Wang G, Kang X, Chen KS, et al. An engineered oncolytic virus expressing PD-L1 inhibitors activates tumor neoantigen-specific T cell responses. Nat Commun 2020; 11 : 1395. [CrossRef] [Google Scholar]
  34. Baeuerle PA, Reinhardt C. Bispecific T-cell engaging antibodies for cancer therapy. Cancer Res 2009 ; 69 : 4941–4944. [CrossRef] [Google Scholar]
  35. Fajardo CA, Guedan S, Rojas LA, et al. oncolytic adenoviral delivery of an egfr-targeting T-cell engager improves antitumor efficacy. Cancer Res 2017 ; 77 : 2052–2063. [CrossRef] [Google Scholar]
  36. Barlabé P, Sostoa J, Fajardo CA, et al. Enhanced antitumor efficacy of an oncolytic adenovirus armed with an EGFR-targeted BiTE using menstrual blood-derived mesenchymal stem cells as carriers. Cancer Gene Ther 2020; 27 : 383–8. [CrossRef] [PubMed] [Google Scholar]
  37. Guo ZS, Lotze MT, Zhu Z, et al. Bi- and tri-specific T cell engager-armed oncolytic viruses: next-generation cancer immunotherapy. Biomedicine 2020; 8 : 204. [Google Scholar]
  38. Pol J, Le Bœuf F, Diallo JS. Stratégies génétiques, immunologiques et pharmacologiques au service d’une nouvelle génération de virus anticancéreux. Med Sci (Paris) 2013 ; 29 : 165–173. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  39. Catros V, Dessarthe B, Thedrez A, Toutirais O. Les récepteurs de nectines/nectines-like DNAM-1 et CRTAM - Immuno-surveillance ou échappement tumoral ?. Med Sci (Paris) 2014 ; 30 : 537–543. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  40. Kitten O, Martineau P. Les formats alternatifs aux anticorps. Fragments et nouvelles charpentes. Med Sci (Paris) 2019 ; 35 : 1092–1097. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.