Free Access
Issue
Med Sci (Paris)
Volume 36, Décembre 2020
Les Cahiers de Myologie
Page(s) 22 - 27
Section Dystrophies musculaires des ceintures (LGMD)
DOI https://doi.org/10.1051/medsci/2020243
Published online 11 January 2021
  1. Duggan DJ, Gorospe JR, Fanin M, et al. Mutations in the sarcoglycan genes in patients with myopathy. N Engl J Med 1997 ; 336 : 618–624. [Google Scholar]
  2. Gao QQ, McNally EM. The dystrophin complex: structure, function, and implications for therapy. Compr Physiol 2015 ; 5 : 1223–1239. [Google Scholar]
  3. Nigro V, Savarese M. Genetic basis of limb-girdle muscular dystrophies: The 2014 update. Acta Myol 2014 ; 33 : 1–12. [PubMed] [Google Scholar]
  4. Asmus F, Salih F, Hjermind LE, et al. Myoclonus-dystonia due to genomic deletions in the epsilon-sarcoglycan gene. Ann Neurol 2005 ; 58 : 792–797. [CrossRef] [PubMed] [Google Scholar]
  5. Ghaoui R, Cooper ST, Lek M, et al. Use of whole-exome sequencing for diagnosis of limb-girdle muscular dystrophy: outcomes and lessons learned. JAMA Neurol 2015 ; 72 : 1424–1432. [Google Scholar]
  6. Liu W, Pajusalu S, Lake NJ, et al. Estimating prevalence for limb-girdle muscular dystrophy based on public sequencing databases. Genet Med 2019 ; 21 : 2512–2520. [CrossRef] [PubMed] [Google Scholar]
  7. Trabelsi M, Kavian N, Daoud F, et al. Revised spectrum of mutations in sarcoglycanopathies. Eur J Hum Genet 2008 ; 16 : 793–803. [Google Scholar]
  8. Dalichaouche I, Sifi Y, Roudaut C, et al. γ-sarcoglycan and dystrophin mutation spectrum in an Algerian cohort. Muscle and Nerve 2017 ; 56 : 129–135. [CrossRef] [Google Scholar]
  9. Alavi A, Esmaeili S, Nilipour Y, et al. LGMD2E is the most common type of sarcoglycanopathies in the Iranian population. J Neurogenet 2017 ; 31 : 161–169. [PubMed] [Google Scholar]
  10. Moore SA, Shilling CJ, Westra S, et al. Limb-girdle muscular dystrophy in the United States. J Neuropathol Exp Neurol 2006 ; 65 : 995–1003. [CrossRef] [PubMed] [Google Scholar]
  11. Alonso-Pérez J, González-Quereda L, Bello L, et al. New genotype-phenotype correlations in a large European cohort of patients with sarcoglycanopathy. Brain 2020. doi:10.1093/brain/awaa228. [Google Scholar]
  12. Passos-Bueno MR, Vainzof M, Moreira ES, Zatz M. Seven autosomal recessive limb-girdle muscular dystrophies in the Brazilian population: from LGMD2A to LGMD2G. Am J Med Genet 1999 ; 82 : 392–398. [Google Scholar]
  13. Piccolo F, Jeanpierre M, Leturcq F, et al. A founder mutation in the gamma-sarcoglycan gene of gypsies possibly predating their migration out of India. Hum Mol Genet 1996 ; 5 : 2019–2022. [CrossRef] [PubMed] [Google Scholar]
  14. Roberds SL, Leturcq F, Allamand V, et al. Missense mutations in the adhalin gene linked to autosomal recessive muscular dystrophy. Cell 1994 ; 78 : 625–633. [CrossRef] [PubMed] [Google Scholar]
  15. Eymard B, Romero NB, Leturcq F, et al. Primary adhalinopathy (α-sarcoglycanopathy): clinical, pathologic, and genetic correlation in 20 patients with autosomal recessive muscular dystrophy. Neurology 1997 ; 48 : 1227–1234. [Google Scholar]
  16. Semplicini C, Vissing J, Dahlqvist JR, et al. Clinical and genetic spectrum in limb-girdle muscular dystrophy type 2E. Neurology 2015 ; 84 : 1772–1781. [Google Scholar]
  17. Xie Z, Hou Y, Yu M, et al. Clinical and genetic spectrum of sarcoglycanopathies in a large cohort of Chinese patients. Orphanet J Rare Dis 2019 ; 14 : 43. [CrossRef] [PubMed] [Google Scholar]
  18. Tasca G, Monforte M, Díaz-Manera J, et al. MRI in sarcoglycanopathies: a large international cohort study. J Neurol Neurosurg Psychiatry 2018 ; 89 : 72–77. [CrossRef] [PubMed] [Google Scholar]
  19. Schade van Westrum SM, Dekker LRC, de Voogt WG, et al. Cardiac involvement in Dutch patients with sarcoglycanopathy: a cross-sectional cohort and follow-up study. Muscle Nerve 2014 ; 50 : 909–913. [Google Scholar]
  20. Kyriakides T, Angelini C, Vilchez J, Hilton-Jones D. European federation of the neurological societies guidelines on the diagnostic approach to paucisymptomatic or asymptomatic hyperCKemia. Muscle Nerve 2020; 61 : E14–5. [Google Scholar]
  21. Fanin M, Melacini P, Boito C, Pegoraro E, Angelini C. LGMD2E patients risk developing dilated cardiomyopathy. Neuromuscul Disord 2003 ; 13 : 303–309. [CrossRef] [PubMed] [Google Scholar]
  22. Politano L, Nigro V, Passamano L, et al. Evaluation of cardiac and respiratory involvement in sarcoglycanopathies. Neuromuscul Disord 2001 ; 11 : 178–185. [CrossRef] [PubMed] [Google Scholar]
  23. Sveen ML, Thune JJ, Køber L, Vissing J. Cardiac involvement in patients with limb-girdle muscular dystrophy type 2 and becker muscular dystrophy. Arch Neurol 2008 ; 65 : 1196–1201. [CrossRef] [PubMed] [Google Scholar]
  24. Guimarães-Costa R, Fernández-Eulate G, Wahbi K, et al. Clinical correlations and long-term follow-up in 100 patients with sarcoglycanopathies. Eur J Neurol 2020; Oct 14. doi:10.1111/ene.14592. [Google Scholar]
  25. Boito C, Fanin M, Siciliano G, Angelini C, Pegoraro E. Novel sarcoglycan gene mutations in a large cohort of Italian patients. J Med Genet 2003 ; 40 : e67. [CrossRef] [PubMed] [Google Scholar]
  26. Merlini L, Kaplan JC, Navarro C, et al. Homogeneous phenotype of the gypsy limb-girdle MD with the γ- sarcoglycan C283Y mutation. Neurology 2000 ; 54 : 1075–1079. [Google Scholar]
  27. Guglieri M, Magri F, D’Angelo MG, et al. Clinical, molecular, and protein correlations in a large sample of genetically diagnosed Italian limb girdle muscular dystrophy patients. Hum Mutat 2008 ; 29 : 258–266. [CrossRef] [PubMed] [Google Scholar]
  28. Winckler PB, da Silva AMS, Coimbra-Neto AR, et al. Clinicogenetic lessons from 370 patients with autosomal recessive limb-girdle muscular dystrophy. Clin Genet 2019 ; 96 : 341–353. [CrossRef] [PubMed] [Google Scholar]
  29. Sandonà D, Betto R. Sarcoglycanopathies: molecular pathogenesis and therapeutic prospects. Expert Rev Mol Med 2009 ; 11 : e28. [CrossRef] [PubMed] [Google Scholar]
  30. Bianchini E, Fanin M, Mamchaoui K, Betto R, Sandonà D. Unveiling the degradative route of the V247M a-sarcoglycan mutant responsible for LGMD-2D. Hum Mol Genet 2014 ; 23 : 3746–3758. [CrossRef] [PubMed] [Google Scholar]
  31. Poupiot J, Costa Verdera H, Hardet R, et al. Role of rregulatory T cell and effector T cell exhaustion in liver-mediated transgene tolerance in muscle. Mol Ther Methods Clin Dev 2019 ; 15 : 83–100. [CrossRef] [PubMed] [Google Scholar]
  32. Israeli D, Cosette J, Corre G, et al. An AAV-SGCG dose-response study in a γ-sarcoglycanopathy mouse model in the context of mechanical stress. Mol Ther Methods Clin Dev 2019 ; 13 : 494–502. [CrossRef] [PubMed] [Google Scholar]
  33. Zhu T, Zhou L, Mori S, et al. Sustained whole-body functional rescue in congestive heart failure and muscular dystrophy hamsters by systemic gene transfer. Circulation 2005 ; 112 : 2650–2659. [CrossRef] [PubMed] [Google Scholar]
  34. Li J, Wang D, Qian S, Chen Z, Zhu T, Xiao X. Efficient and long-term intracardiac gene transfer in δ-sarcoglycan-deficiency hamster by adeno-associated virus-2 vectors. Gene Ther 2003 ; 10 : 1807–1813. [CrossRef] [PubMed] [Google Scholar]
  35. Xiao X, Li J, Tsao Y-P, Dressman D, Hoffman EP, Watchko JF. Full functional rescue of a complete muscle (TA) in dystrophic hamsters by adeno-associated virus vector-directed gene therapy. J Virol 2000 ; 74 : 1436–1442. [CrossRef] [PubMed] [Google Scholar]
  36. Cordier L, Hack AA, Scott MO, et al. Rescue of skeletal muscles of γ-sarcoglycan- deficient mice with adeno-associated virus-mediated gene transfer. Mol Ther 2000 ; 1 : 119–129. [CrossRef] [PubMed] [Google Scholar]
  37. Cordier L, Gao GP, Hack AA, et al. Muscle-specific promoters may be necessary for adeno-associated virus-mediated gene transfer in the treatment of muscular dystrophies. Hum Gene Ther 2001 ; 12 : 205–215. [Google Scholar]
  38. Li J, Dressman D, Tsao YP, et al. rAAV vector-mediated sarcogylcan gene transfer in a hamster model for limb girdle muscular dystrophy. Gene Ther 1999 ; 6 : 74–82. [CrossRef] [PubMed] [Google Scholar]
  39. Mendell JR, Rodino-Klapac LR, Rosales XQ, et al. Sustained alpha-sarcoglycan gene expression after gene transfer in limb-girdle muscular dystrophy, type 2D. Ann Neurol 2010 ; 68 : 629–638. [CrossRef] [PubMed] [Google Scholar]
  40. Rodino-Klapac LR, Lee JS, Mulligan RC, et al. Lack of toxicity of alpha-sarcoglycan overexpression supports clinical gene transfer trial in LGMD2D. Neurology 2008 ; 71 : 240–247. [Google Scholar]
  41. Pacak CA, Walter GA, Gaidosh G, et al. Long-term skeletal muscle protection after gene transfer in a mouse model of LGMD-2D. Mol Ther 2007 ; 15 : 1775–1781. [CrossRef] [PubMed] [Google Scholar]
  42. Fougerousse F, Bartoli M, Poupiot J, et al. Phenotypic correction of α-sarcoglycan deficiency by intra-arterial injection of a muscle-specific serotype 1 rAAV vector. Mol Ther 2007 ; 15 : 53–61. [Google Scholar]
  43. Dressman D, Araishi K, Imamura M, et al. Delivery of α- and β-sarcoglycan by recombinant adeno-associated virus: efficient rescue of muscle, but differential toxicity. Hum Gene Ther 2002 ; 13 : 1631–1646. [Google Scholar]
  44. Pozsgai ER, Griffin DA, Heller KN, Mendell JR, Rodino-Klapac LR. Systemic AAV-mediated β-sarcoglycan delivery targeting cardiac and skeletal muscle ameliorates histological and functional deficits in LGMD2E mice. Mol Ther 2017 ; 25 : 855–869. [CrossRef] [PubMed] [Google Scholar]
  45. Vitiello C, Faraso S, Sorrentino NC, et al. Disease rescue and increased lifespan in a model of cardiomyopathy and muscular dystrophy by combined AAV treatments. PLoS One 2009 ; 4 : e5051. [Google Scholar]
  46. Goehringer C, Rutschow D, Bauer R, et al. Prevention of cardiomyopathy in δ-sarcoglycan knockout mice after systemic transfer of targeted adeno-associated viral vectors. Cardiovasc Res 2009 ; 82 : 404–410. [CrossRef] [PubMed] [Google Scholar]
  47. Mendell JR, Rodino-Klapac LR, Rosales-Quintero X, et al. Limb-girdle muscular dystrophy type 2D gene therapy restores α-sarcoglycan and associated proteins. Ann Neurol 2009 ; 66 : 290–297. [CrossRef] [PubMed] [Google Scholar]
  48. Herson S, Hentati F, Rigolet A, et al. A phase I trial of adeno-associated virus serotype 1-γ-sarcoglycan gene therapy for limb girdle muscular dystrophy type 2C. Brain 2012 ; 135 : 483–492. [CrossRef] [PubMed] [Google Scholar]
  49. Mendell JR, Chicoine LG, Al-Zaidy SA, et al. Gene delivery for limb-girdle muscular dystrophy type 2d by isolated limb infusion. Hum Gene Ther 2019 ; 30 : 794–801. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.