Free Access
Med Sci (Paris)
Volume 36, Décembre 2020
Les Cahiers de Myologie
Page(s) 28 - 33
Section Dystrophies musculaires des ceintures (LGMD)
Published online 11 January 2021
  1. Brockington M, Yuva Y, Prandini P, et al. Mutations in the fukutin-related protein gene (FKRP) identify limb girdle muscular dystrophy 21 as a milder allelic variant of congenital muscular dystrophy MDC1C. Hum Mol Genet 2001 ; 10 : 2851–2859. [CrossRef] [PubMed] [Google Scholar]
  2. Poppe M, Cree L, Bourke J, et al. The phenotype of limb-girdle muscular dystrophy type 2I. Neurology 2003 ; 60 : 1246–1251. [Google Scholar]
  3. Hara Y, Balci-Hayta B, Yoshida-Moriguchi T, et al. A Dystroglycan mutation associated with limb-girdle muscular dystrophy. N Engl J Med 2011 ; 34464 : 939–946. [Google Scholar]
  4. Alhamidi M, Kjeldsen Buvang E, et al. Fukutin-related protein resides in the Golgi cisternae of skeletal muscle fibres and forms disulfide-linked homodimers via an N-terminal interaction. PLoS One 2011 ; 6 : [Google Scholar]
  5. Kobayashi K, Nakahori Y, Miyake M, et al. An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature 1998 ; 394 : 388–392. [CrossRef] [PubMed] [Google Scholar]
  6. Muntoni F, Torelli S, Wells DJ, et al. Muscular dystrophies due to glycosylation defects. Curr Opin Neurol 2011 ; 24 : 437–442. [CrossRef] [PubMed] [Google Scholar]
  7. Brockington M, Blake DJ, Prandini P, et al. Mutations in the fukutin-related protein gene (FKRP) cause a form of congenital muscular dystrophy with secondary laminin α2 deficiency and abnormal glycosylation of α-dystroglycan. Am J Hum Genet 2001 ; 69 : 1198–1209. [Google Scholar]
  8. Stensland E, Lindal S, Jonsrud C, et al. Prevalence, mutation spectrum and phenotypic variability in Norwegian patients with limb girdle muscular dystrophy 2I. Neuromuscul Disord 2011 ; 21 : 41–46. [CrossRef] [PubMed] [Google Scholar]
  9. Topaloglu H, Brockington M, Yuva Y, et al. FKRP gene mutations cause congenital muscular dystrophy, mental retardation, and cerebellar cysts. Neurology 2003 ; 60 : 988–992. [Google Scholar]
  10. Beltran-Valero de Bernabé D, Voit T, Longman C, et al. Mutations in the FKRP gene can cause muscle-eye-brain disease and Walker-Warburg syndrome. J Med Genet 2004 ; 41 : [Google Scholar]
  11. Poppe M, Bourke J, Eagle M, et al. Cardiac and respiratory failure in limb-girdle muscular dystrophy 2I. Ann Neurol 2004 ; 56 : 738–741. [CrossRef] [PubMed] [Google Scholar]
  12. Sveen ML, Schwartz M, Vissing J. High prevalence and phenotype-genotype correlations of limb girdle muscular dystrophy type 2I in Denmark. Ann Neurol 2006 ; 59 : 808–815. [CrossRef] [PubMed] [Google Scholar]
  13. Carlson CR, McGaughey SD, Eskuri JM, et al. Illness-associated muscle weakness in dystroglycanopathies. Neurology 2017 ; 89 : 2374–2380. [Google Scholar]
  14. Mercuri E, Brockington M, Straub V, et al. Phenotypic spectrum associated with mutations in the fukutin-related protein gene. Ann Neurol 2003 ; 53 : 537–542. [CrossRef] [PubMed] [Google Scholar]
  15. Bourteel H, Vermersch P, Cuisset JM, et al. Clinical and mutational spectrum of limb-girdle muscular dystrophy type 2I in 11 French patients. J Neurol Neurosurg Psychiatry 2009 ; 80 : 1405–08 7. [CrossRef] [PubMed] [Google Scholar]
  16. Petri H, Sveen ML, Thune JJ, et al. Progression of cardiac involvement in patients with limb-girdle type 2 and Becker muscular dystrophies: a 9-year follow-up study. Int J Cardiol 2015 ; 182 : 403–411. [CrossRef] [PubMed] [Google Scholar]
  17. Wahbi K, Meune C, Hammouda EH, et al. Cardiac assessment of limb-girdle muscular dystrophy 2I patients: an echography, Holter ECG and magnetic resonance imaging study. Neuromuscul Disord 2008 ; 18 : 650–655. [CrossRef] [PubMed] [Google Scholar]
  18. Willis TA, Hollingsworth KG, Coombs A, et al. Quantitative magnetic resonance imaging in limb-girdle muscular dystrophy 2i: a multinational cross-sectional study. PLoS One 2014 ; 9 : [Google Scholar]
  19. Xu L, Lu PJ, Wang CH, et al. Adeno-associated virus 9 mediated FKRP gene therapy restores functional glycosylation of α-dystroglycan and improves muscle functions. Mol Ther 2013 ; 21 : 1832–1840. [CrossRef] [PubMed] [Google Scholar]
  20. Qiao C, Wang CH, Zhao C, et al. Muscle and heart function restoration in a limb girdle muscular dystrophy 2I (LGMD2I) mouse model by systemic FKRP gene delivery. Mol Ther 2014 ; 22 : 1890–1899. [CrossRef] [PubMed] [Google Scholar]
  21. Gicquel E, Maizonnier N, Foltz SJ, et al. AAV-mediated transfer of FKRP shows therapeutic efficacy in a murine model but requires control of gene expression. Hum Mol Genet 2017 ; 26 : 1952–1965. [CrossRef] [PubMed] [Google Scholar]
  22. Vannoy CH, Xiao W, Lu P, et al. Efficacy of gene therapy is dependent on disease progression in dystrophic mice with mutations in the FKRP gene. Mol Ther Methods Clin Dev 2017 ; 5 : 31–42. [CrossRef] [PubMed] [Google Scholar]
  23. Vannoy CH, Leroy V, Lu QL. Dose-dependent effects of fkrp gene-replacement therapy on functional rescue and longevity in dystrophic mice. Mol Ther Methods Clin Dev 2018 ; 11 : 106–120. [CrossRef] [PubMed] [Google Scholar]
  24. Kawanaga M, Kobayashi K, Tajiri M, et al. Identification of a post-translational modification with ribitol-phosphate and its defect in muscular dystrophy. Cell Reports 2016 ; 14 : 2209–2223. [CrossRef] [PubMed] [Google Scholar]
  25. Gerin I, Ury B, Breloy I, et al. ISPD produces CDP-ribitol used by FKTN and FKRP to transfer ribitol phosphate onto α-dystroglycan. Nat Commun 2016; 7. [Google Scholar]
  26. Cataldi MP, Lu P, Blaeser A, et al. Ribitol restores functionally glycosylated α-dystroglycan and improves muscle function in dystrophic FKRP-mutant mice. Nat Commun 2018; 9. [Google Scholar]
  27. Barresi R, Campbell KP. Dystroglycan: from biosynthesis to pathogenesis of human disease. J Cell Sci. 2006 ; 119 : 199–207. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.