Open Access
Med Sci (Paris)
Volume 36, Number 12, Décembre 2020
Vieillissement et mort : de la cellule à l’individu
Page(s) 1155 - 1162
Section Vieillissement physiologique et pathologique
Published online 09 December 2020
  1. Lopez-Otin C, Blasco MA, Partridge L, et al. The hallmarks of aging. Cell 2013 ; 153 : 1194–1217. [CrossRef] [PubMed] [Google Scholar]
  2. Giangreco A, Qin M, Pintar JE, Watt FM. Epidermal stem cells are retained in vivo throughout skin aging. Aging Cell 2008 ; 7 : 250–259. [CrossRef] [PubMed] [Google Scholar]
  3. Ge Y, Miao Y, Gur-Cohen S, et al. The aging skin microenvironment dictates stem cell behavior. Proc Natl Acad Sci USA 2020; 117 : 5339–50. [CrossRef] [Google Scholar]
  4. Lehmann M, Canatelli-Mallat M, Chiavellini P, Goya RG. A hierarchical model for the control of epigenetic aging in mammals. Ageing Res Rev 2020; 62 : 101134. [CrossRef] [PubMed] [Google Scholar]
  5. Muther C, Jobeili L, Garion M, et al. An expression screen for aged-dependent microRNAs identifies miR-30a as a key regulator of aging features in human epidermis. Aging (Albany NY) 2017 ; 9 : 2376–2396. [CrossRef] [Google Scholar]
  6. Chevalier F, Rorteau J, Lamartine J. microRNAs in the functional defects of skin aging. In: IntechOpen (ed). Non-coding RNAs 2020. [Google Scholar]
  7. Gu Y, Han J, Jiang C, Zhang Y. Biomarkers, oxidative stress and autophagy in skin aging. Ageing Res Rev 2020; 59 : 101036. [CrossRef] [PubMed] [Google Scholar]
  8. Vermeij WP, Alia A, Backendorf C. ROS quenching potential of the epidermal cornified cell envelope. J Invest Dermatol 2011 ; 131 : 1435–1441. [CrossRef] [PubMed] [Google Scholar]
  9. Haydont V, Bernard BA, Fortunel NO. Age-related evolutions of the dermis: clinical signs, fibroblast and extracellular matrix dynamics. Mech Ageing Dev 2019 ; 177 : 150–156. [CrossRef] [PubMed] [Google Scholar]
  10. Shin JW, Kwon SH, Choi JY, et al. Molecular mechanisms of dermal aging and antiaging approaches. Int J Mol Sci 2019 ; 20 : [Google Scholar]
  11. Lago JC, Puzzi MB. The effect of aging in primary human dermal fibroblasts. PLoS One 2019 ; 14 : e0219165. [CrossRef] [Google Scholar]
  12. Gruber F, Kremslehner C, Eckhart L, Tschachler E. Cell aging and cellular senescence in skin aging - Recent advances in fibroblast and keratinocyte biology. Exp Gerontol 2020; 130 : 110780. [CrossRef] [PubMed] [Google Scholar]
  13. Lopes-Paciencia S, Saint-Germain E, Rowell MC, et al. The senescence-associated secretory phenotype and its regulation. Cytokine 2019 ; 117 : 15–22. [CrossRef] [Google Scholar]
  14. Terlecki-Zaniewicz L, Lammermann I, Latreille J, et al. Small extracellular vesicles and their miRNA cargo are anti-apoptotic members of the senescence-associated secretory phenotype. Aging (Albany NY) 2018 ; 10 : 1103–1132. [CrossRef] [Google Scholar]
  15. Terlecki-Zaniewicz L, Pils V, Bobbili MR, et al. Extracellular vesicles in human skin: cross-talk from senescent fibroblasts to keratinocytes by miRNAs. J Invest Dermatol 2019 ; 139 : 2425–36.e5. [CrossRef] [PubMed] [Google Scholar]
  16. Choi EJ, Kil IS, Cho EG. Extracellular vesicles derived from senescent fibroblasts attenuate the dermal effect on keratinocyte differentiation. Int J Mol Sci 2020; 21. [Google Scholar]
  17. Cracowski JL, Roustit M. Human skin microcirculation. compr physiol 2020; 10 : 1105–54. [CrossRef] [Google Scholar]
  18. Bentov I, Reed MJ. the effect of aging on the cutaneous microvasculature. Microvasc Res 2015; 100 : 25–31. [CrossRef] [Google Scholar]
  19. Johnson JM, Minson CT, Kellogg DL, Jr.. Cutaneous vasodilator and vasoconstrictor mechanisms in temperature regulation. Compr Physiol 2014 ; 4 : 33–89. [CrossRef] [Google Scholar]
  20. Matz RL, Andriantsitohaina R. Age-related endothelial dysfunction: potential implications for pharmacotherapy. Drugs Aging 2003 ; 20 : 527–550. [CrossRef] [Google Scholar]
  21. Cau SB, Carneiro FS, Tostes RC. Differential modulation of nitric oxide synthases in aging: therapeutic opportunities. Front Physiol 2012 ; 3 : 218. [PubMed] [Google Scholar]
  22. Nusgens BV, Humbert P, Rougier A, et al. Topically applied vitamin C enhances the mRNA level of collagens I and III, their processing enzymes and tissue inhibitor of matrix metalloproteinase 1 in the human dermis. J Invest Dermatol 2001 ; 116 : 853–859. [CrossRef] [PubMed] [Google Scholar]
  23. Payne GW. Effect of inflammation on the aging microcirculation: impact on skeletal muscle blood flow control. Microcirculation 2006 ; 13 : 343–352. [CrossRef] [PubMed] [Google Scholar]
  24. El Assar M, Angulo J, Vallejo S, et al. Mechanisms involved in the aging-induced vascular dysfunction. Front Physiol 2012 ; 3 : 132. [CrossRef] [PubMed] [Google Scholar]
  25. Gaubert ML, Sigaudo-Roussel D, Tartas M, et al. Endothelium-derived hyperpolarizing factor as an in vivo back-up mechanism in the cutaneous microcirculation in old mice. J Physiol 2007 ; 585 : 617–626. [CrossRef] [PubMed] [Google Scholar]
  26. Fromy B, Lingueglia E, Sigaudo-Roussel D, et al. Asic3 is a neuronal mechanosensor for pressure-induced vasodilation that protects against pressure ulcers. Nat Med 2012 ; 18 : 1205–1207. [CrossRef] [PubMed] [Google Scholar]
  27. Fouchard M, Misery L, Le Garrec R, et al. Alteration of pressure-induced vasodilation in aging and diabetes, a neuro-vascular damage. Front Physiol 2019 ; 10 : 862. [CrossRef] [PubMed] [Google Scholar]
  28. Fromy B, Sigaudo-Roussel D, Gaubert-Dahan ML, et al. Aging-associated sensory neuropathy alters pressure-induced vasodilation in humans. J Invest Dermatol 2010 ; 130 : 849–855. [CrossRef] [PubMed] [Google Scholar]
  29. Gaubert-Dahan ML, Castro-Lionard K, Blanchon MA, Fromy B. Severe sensory neuropathy increases risk of heel pressure ulcer in older adults. J Am Geriatr Soc 2013 ; 61 : 2050–2052. [CrossRef] [PubMed] [Google Scholar]
  30. Romana-Souza B, Silva-Xavier W, Monte-Alto-Costa A. Topical retinol attenuates stress-induced ageing signs in human skin ex vivo, throughEGFR activation viaEGF, but notERK andAP-1 activation. Exp Dermatol 2019 ; 28 : 906–913. [CrossRef] [PubMed] [Google Scholar]
  31. Pineau N, Carrino DA, Caplan AI, Breton L. Biological evaluation of a new C-xylopyranoside derivative (C-Xyloside) and its role in glycosaminoglycan biosynthesis. Eur J Dermatol 2011 ; 21 : 359–370. [CrossRef] [PubMed] [Google Scholar]
  32. Sok J, Pineau N, Dalko-Csiba M, et al. Improvement of the dermal epidermal junction in human reconstructed skin by a new c-xylopyranoside derivative. Eur J Dermatol 2008 ; 18 : 297–302. [PubMed] [Google Scholar]
  33. Abdel-Motaleb AA, Abu-Dief EE, Hussein MR. Dermal morphological changes following salicylic acid peeling and microdermabrasion. J Cosmet Dermatol 2017 ; 16 : e9–e14. [CrossRef] [PubMed] [Google Scholar]
  34. Taddei S, Virdis A, Ghiadoni L, et al. Age-related reduction of NO availability and oxidative stress in humans. Hypertension 2001 ; 38 : 274–279. [CrossRef] [PubMed] [Google Scholar]
  35. Aldecoa C, Llau JV, Nuvials X, Artigas A. Role of albumin in the preservation of endothelial glycocalyx integrity and the microcirculation: a review. Ann Intensive Care 2020; 10 : 85. [CrossRef] [PubMed] [Google Scholar]
  36. La Jordan B.. sénescence en passe d’être vaincue ?. Med Sci (Paris) 2018 ; 34 : 885–890. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  37. Lammermann I, Terlecki-Zaniewicz L, Weinmullner R, et al. Blocking negative effects of senescence in human skin fibroblasts with a plant extract. NPJ Aging Mech Dis 2018 ; 4 : 4. [CrossRef] [PubMed] [Google Scholar]
  38. Victorelli S, Lagnado A, Halim J, et al. Senescent human melanocytes drive skin ageing via paracrine telomere dysfunction. EMBO J 2019 ; 38 : e101982. [CrossRef] [PubMed] [Google Scholar]
  39. Jobeili L, Rousselle P, Beal D, et al. Selenium preserves keratinocyte stemness and delays senescence by maintaining epidermal adhesion. Aging (Albany NY) 2017 ; 9 : 2302–2315. [CrossRef] [Google Scholar]
  40. Hickson LJ, Langhi Prata LGP, Bobart SA, et al. Senolytics decrease senescent cells in humans: Preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine 2019 ; 47 : 446–456. [CrossRef] [PubMed] [Google Scholar]
  41. Boismal F, Serror K, Dobos G, et al. Vieillissement cutané : physiopathologie et thérapies innovantes. Med Sci (Paris) 2020; 36 : 1163–72. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  42. Veret D, Brondello JM. Sénothérapies : avancées et nouvelles perspectives cliniques. Med Sci (Paris) 2020; 36 : 1135–42. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.