Open Access
Issue
Med Sci (Paris)
Volume 36, Number 12, Décembre 2020
Vieillissement et mort : de la cellule à l’individu
Page(s) 1163 - 1172
Section Vieillissement physiologique et pathologique
DOI https://doi.org/10.1051/medsci/2020232
Published online 09 December 2020
  1. Harman D.. The aging process. Proc Natl Acad Sci USA 1981 ; 78 : 7124–7128. [CrossRef] [Google Scholar]
  2. Haydont V, Neiveyans V, Fortunel NO, et al. Transcriptome profiling of human papillary and reticular fibroblasts from adult interfollicular dermis pinpoints the tissue skeleton gene network as a component of skin chrono-ageing. Mech Ageing Dev 2019 ; 179 : 60–77. [CrossRef] [PubMed] [Google Scholar]
  3. Gosain A, DiPietro LA. Aging and wound healing. World J Surg 2004 ; 28 : 321–326. [CrossRef] [PubMed] [Google Scholar]
  4. Li B, Wang JHC. Fibroblasts and myofibroblasts in wound healing: force generation and measurement. J Tissue Viability 2011 ; 20 : 108–120. [CrossRef] [PubMed] [Google Scholar]
  5. Brun C, Jean-Louis F, Oddos T, et al. Phenotypic and functional changes in dermal primary fibroblasts isolated from intrinsically aged human skin. Exp Dermatol 2016 ; 25 : 113–119. [CrossRef] [PubMed] [Google Scholar]
  6. Phillip JM, Aifuwa I, Walston J, et al. The mechanobiology of aging. Annu Rev Biomed Eng 2015 ; 17 : 113–141. [CrossRef] [PubMed] [Google Scholar]
  7. Janmey PA, Weitz DA. Dealing with mechanics: mechanisms of force transduction in cells. Trends Biochem Sci 2004 ; 29 : 364–370. [CrossRef] [PubMed] [Google Scholar]
  8. Schulze C, Wetzel F, Kueper T, et al. Stiffening of human skin fibroblasts with age. Biophys J 2010 ; 99 : 2434–2442. [CrossRef] [PubMed] [Google Scholar]
  9. Wang HB, Dembo M, Hanks SK, et al. Focal adhesion kinase is involved in mechanosensing during fibroblast migration. Proc Natl Acad Sci USA 2001 ; 98 : 11295–11300. [CrossRef] [Google Scholar]
  10. Panciera T, Azzolin L, Cordenonsi M, et al. Mechanobiology of YAP and TAZ in physiology and disease. Nat Rev Mol Cell Biol 2017 ; 18 : 758–770. [CrossRef] [PubMed] [Google Scholar]
  11. Chandorkar Y, Castro Nava A, Schweizerhof S, et al. Cellular responses to beating hydrogels to investigate mechanotransduction. Nat Commun 2019 ; 10 : 4027. [CrossRef] [Google Scholar]
  12. Kuo JC. Mechanotransduction at focal adhesions: integrating cytoskeletal mechanics in migrating cells. J Cell Mol Med 2013 ; 17 : 704–712. [CrossRef] [PubMed] [Google Scholar]
  13. Cole MA, Quan T, Voorhees JJ, et al. Extracellular matrix regulation of fibroblast function: redefining our perspective on skin aging. J Cell Commun Signal. 2018 ; 12 : 35–43. [CrossRef] [PubMed] [Google Scholar]
  14. Park D, Wershof E, Boeing S, et al. Extracellular matrix anisotropy is determined by TFAP2C-dependent regulation of cell collisions. Nat Mater 2020; 19 :227–38. [CrossRef] [PubMed] [Google Scholar]
  15. Jin T, Li L, Siow RC, et al. Collagen matrix stiffness influences fibroblast contraction force. Biomed Phys Eng Express 2016 ; 2 : 047002. [CrossRef] [Google Scholar]
  16. Ozcelikkale A, Dutton JC, Grinnell F, et al. Effects of dynamic matrix remodelling on en masse migration of fibroblasts on collagen matrices. JR Soc Interface 2017 ; 14 : 20170287. [CrossRef] [Google Scholar]
  17. Jaisson S, Desmons A, Gorisse L, et al. Vieillissement moléculaire des protéines : quel rôle en physiopathologie ?. Med Sci (Paris) 2017 ; 33 : 176–182. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  18. Achterberg VF, Buscemi L, Diekmann H, et al. The nano-scale mechanical properties of the extracellular matrix regulate dermal fibroblast function. J Invest Dermatol 2014 ; 134 : 1862–1872. [CrossRef] [PubMed] [Google Scholar]
  19. Qin Z, Fisher GJ, Voorhees JJ, et al. Actin cytoskeleton assembly regulates collagen production via TGF-β type II receptor in human skin fibroblasts. J Cell Mol Med 2018 ; 22 : 4085–4096. [CrossRef] [PubMed] [Google Scholar]
  20. Reed MJ, Ferara NS, Vernon RBB. Impaired migration, integrin function, and actin cytoskeletal organization in dermal fibroblasts from a subset of aged human donors. Mech Ageing Dev 2001 ; 122 : 1203–1220. [CrossRef] [PubMed] [Google Scholar]
  21. Tomasek JJ, Gabbiani G, Hinz B, et al. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 2002 ; 3 : 349–363. [CrossRef] [PubMed] [Google Scholar]
  22. Sandbo N, Dulin N. Actin cytoskeleton in myofibroblast differentiation: ultrastructure defining form and driving function. Transl Res 2011 ; 158 : 181–196. [CrossRef] [PubMed] [Google Scholar]
  23. Beningo KA, Dembo M, Kaverina I, et al. Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J Cell Biol 2001 ; 153 : 881–888. [CrossRef] [PubMed] [Google Scholar]
  24. De Pascalis C, Etienne-Manneville S. Single and collective cell migration: the mechanics of adhesions. Mol Biol Cell 2017 ; 28 : 1833–1846. [CrossRef] [PubMed] [Google Scholar]
  25. Yamada KM, Sixt M. Mechanisms of 3D cell migration. Nat Rev Mol Cell Biol 2019 ; 20 : 738–752. [CrossRef] [PubMed] [Google Scholar]
  26. Abreu-Blanco MT, Watts JJ, Verboon JM, et al. Cytoskeleton responses in wound repair. Cell Mol Life Sci 2012 ; 69 : 2469–2483. [CrossRef] [PubMed] [Google Scholar]
  27. Braverman IM, Fonferko E. Studies in cutaneous aging. I. The elastic fiber network. J Invest Dermatol 1982 ; 78 : 434–443. [CrossRef] [PubMed] [Google Scholar]
  28. Pellegrin S, Mellor H. Actin stress fibres. J Cell Sci 2017 ; 120 : 3491–3499. [CrossRef] [PubMed] [Google Scholar]
  29. Solé-Boldo L, Raddatz G, Schütz S, et al. Single-cell transcriptomes of the human skin reveal age-related loss of fibroblast priming Commun Biol 2020; 3 : 188. [CrossRef] [Google Scholar]
  30. Vallet H, Fali T, Sauce D. Le vieillissement du système immunitaire : du fondamental à la clinique. Rev Med Interne 2019 ; 40 : 105–111. [CrossRef] [PubMed] [Google Scholar]
  31. Goronzy J J, Weyand C M. Understanding immunosenescence to improve responses to vaccines. Nat Immunol 2013 ; 14 : 428–436. [CrossRef] [PubMed] [Google Scholar]
  32. Vukmanovic-Stejic M, Sandhu D, Seidel JA, et al. The characterization of varicella zoster virus-specific t cells in skin and blood during aging. J Invest Dermatol 2015 ; 135 : 1752–1762. [CrossRef] [PubMed] [Google Scholar]
  33. Jagger A, Shimojima Y, Goronzy JJ, et al. Regulatory T cells and the immune aging process: a mini-review. Gerontology 2014 ; 60 : 130–137. [CrossRef] [PubMed] [Google Scholar]
  34. Smithey MJ, Uhrlaub JL, Li G, et al. Lost in translation: mice, men and cutaneous immunity in old age. Biogerontology 2015 ; 16 : 203–208. [CrossRef] [Google Scholar]
  35. Zuelgaray E, Boccara D, Ly Ka So S, et al. Increased expression of PD1 and CD39 on CD3+ CD4+ skin T cells in the elderly. Exp Dermatol 2019 ; 28 : 80–82. [CrossRef] [PubMed] [Google Scholar]
  36. WHO. World health statistics 2020. monitoring health for the SDGs, sustainable development goals. Geneva : World Health Organization, 2020; Licence : CC BY-NC-SA 3.0 IGO. [Google Scholar]
  37. Vierkötter A, Ranft U, Krämer U, et al. The SCINEXA: a novel, validated score to simultaneously assess and differentiate between intrinsic and extrinsic skin ageing. J Dermatol Sci 2009 ; 53 : 207–211. [CrossRef] [PubMed] [Google Scholar]
  38. Krutmann J, Passeron T, Gilaberte Y, et al. Photoprotection of the future: challenges and opportunities. J Eur Acad Dermatol Venerol 2020; 34 : 447–54. [CrossRef] [Google Scholar]
  39. Fournet M, Bonté F, Desmoulière A. Glycation damage: a possible hub for major pathophysiological disorders and aging. Aging Disease 2018 ; 9 : 880–900. [CrossRef] [Google Scholar]
  40. Akdeniz M, Boeing H, Müller-Werdan U, et al. Effect of fluid intake on hydration status and skin barrier characteristics in geriatric patients: an explorative study. Skin Pharmacol Physiol 2018 ; 31 : 155–162. [CrossRef] [PubMed] [Google Scholar]
  41. Dobos G, Lichterfeld A, Blume-Peytavi U, et al. Evaluation of skin ageing: a systematic review of clinical scales. Br J Dermatol 2015 ; 172 : 1249–1261. [CrossRef] [PubMed] [Google Scholar]
  42. Dobos G, Trojahn C, Lichterfeld A, et al. Quantifying dyspigmentation in facial skin ageing: an explorative study. Int J Cosmet Sci 2015 ; 37 : 542–549. [CrossRef] [Google Scholar]
  43. Beylot C.. Vieillissement cutané. Vieillissement facial global : orientation thérapeutique. Ann Dermatol Venereol 2019 ; 146 : 41–74. [CrossRef] [PubMed] [Google Scholar]
  44. Trojahn C, Dobos G, Lichterfeld A, et al. Characterizing facial skin ageing in humans: disentangling extrinsic from intrinsic biological phenomena. Biomed Res Int 2015 ; 2015 : 318586. [CrossRef] [Google Scholar]
  45. Ayer J, Ahmed A, Duncan-Parry E, et al. A photonumeric scale for the assessment of atrophic facial photodamage. Br J Dermatol 2018 ; 178 : 1190–1195. [CrossRef] [PubMed] [Google Scholar]
  46. Laughter MR, Maymone MBC, Karimkhani C, et al. The burden of skin and subcutaneous diseases in the United States from 1990 to 2017. JAMA Dermatol 2020 ; 156 : 1–8. [CrossRef] [PubMed] [Google Scholar]
  47. Grandahl K, Olsen J, Friis KBE, et al. Photoaging and actinic keratosis in Danish outdoor and indoor workers. Photodermatol Photoimmunol Photomed 2019 ; 35 : 201–207. [CrossRef] [PubMed] [Google Scholar]
  48. Dean SM. Cutaneous manifestations of chronic vascular disease. Prog Cardiovasc Dis 2018 ; 60 : 567–579. [CrossRef] [PubMed] [Google Scholar]
  49. Yang M, Wu H, Zhao M, Chang C, Lu Q. The pathogenesis of bullous skin diseases. J Transl Autoimmun 2019 ; 2 : 100014. [CrossRef] [PubMed] [Google Scholar]
  50. Zouboulis CC, Gancevienne R, Aikaerini IL, et al. Aesthetic aspects of skin aging, prevention, and local treatment. Clin Dermatol 2019 ; 37 : 365–367. [CrossRef] [PubMed] [Google Scholar]
  51. Ganceviciene R, Liakou AI, Theodoridis A, et al. Skin anti-aging strategies. Dermatoendocrinol 2012 ; 4 : 308–319. [Google Scholar]
  52. Zhang S, Duan E. Fighting against skin aging: the way from bench to bedside. Cell Transplant 2018 ; 27 : 729–738. [CrossRef] [PubMed] [Google Scholar]
  53. Remoué N, Molinari J, Andres E, et al. Development of an in vitro model of menopause using primary human dermal fibroblasts. Int J Cosmet Sci 2013 ; 35 : 546–554. [CrossRef] [Google Scholar]
  54. Yun-Nan L, Shu-Hung H, Tsung-Ying L, et al. Micro-autologous fat transplantation for rejuvenation of the dorsal surface of the aging hand. J Plast Reconstr Aesthet Surg 2018 ; 71 : 573–584. [CrossRef] [Google Scholar]
  55. Yoneda M, Shimizu S, Nishi Y, et al. Hyaluronic acid-dependent change in the extracellular matrix of mouse dermal fibroblasts that is conducive to cell proliferation. J Cell Sci 1988 ; 90 : 275–286. [Google Scholar]
  56. Maisel-Campbell AL, Ismail A, Reynolds KA, et al. A systematic review of the safety and effectiveness of platelet-rich plasma (PRP) for skin aging. Arch Dermatol Res 2020; 312 : 301–15. [CrossRef] [PubMed] [Google Scholar]
  57. Rorteau J, Chevalier FP, Fromy B, Lamartine J. Vieillissement et intégrité de la peau, de la biologie cutanée aux stratégies anti-âge. Med Sci (Paris) 2020; 36 : 1155–62. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  58. Willyard C. How anti-ageing drugs could boost COVID vaccines in older people. Nature 2020; 586 : 352–4. [CrossRef] [PubMed] [Google Scholar]
  59. Jégou B. Le paradigme de l’exposome : définition, contexte et perspective. Med Sci (Paris) 2020; 36 : 959–60. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.