Open Access
Numéro
Med Sci (Paris)
Volume 36, Numéro 12, Décembre 2020
Vieillissement et mort : de la cellule à l’individu
Page(s) 1163 - 1172
Section Vieillissement physiologique et pathologique
DOI https://doi.org/10.1051/medsci/2020232
Publié en ligne 9 décembre 2020
  1. Harman D.. The aging process. Proc Natl Acad Sci USA 1981 ; 78 : 7124–7128. [CrossRef] [Google Scholar]
  2. Haydont V, Neiveyans V, Fortunel NO, et al. Transcriptome profiling of human papillary and reticular fibroblasts from adult interfollicular dermis pinpoints the tissue skeleton gene network as a component of skin chrono-ageing. Mech Ageing Dev 2019 ; 179 : 60–77. [CrossRef] [PubMed] [Google Scholar]
  3. Gosain A, DiPietro LA. Aging and wound healing. World J Surg 2004 ; 28 : 321–326. [CrossRef] [PubMed] [Google Scholar]
  4. Li B, Wang JHC. Fibroblasts and myofibroblasts in wound healing: force generation and measurement. J Tissue Viability 2011 ; 20 : 108–120. [CrossRef] [PubMed] [Google Scholar]
  5. Brun C, Jean-Louis F, Oddos T, et al. Phenotypic and functional changes in dermal primary fibroblasts isolated from intrinsically aged human skin. Exp Dermatol 2016 ; 25 : 113–119. [CrossRef] [PubMed] [Google Scholar]
  6. Phillip JM, Aifuwa I, Walston J, et al. The mechanobiology of aging. Annu Rev Biomed Eng 2015 ; 17 : 113–141. [CrossRef] [PubMed] [Google Scholar]
  7. Janmey PA, Weitz DA. Dealing with mechanics: mechanisms of force transduction in cells. Trends Biochem Sci 2004 ; 29 : 364–370. [CrossRef] [PubMed] [Google Scholar]
  8. Schulze C, Wetzel F, Kueper T, et al. Stiffening of human skin fibroblasts with age. Biophys J 2010 ; 99 : 2434–2442. [CrossRef] [PubMed] [Google Scholar]
  9. Wang HB, Dembo M, Hanks SK, et al. Focal adhesion kinase is involved in mechanosensing during fibroblast migration. Proc Natl Acad Sci USA 2001 ; 98 : 11295–11300. [CrossRef] [Google Scholar]
  10. Panciera T, Azzolin L, Cordenonsi M, et al. Mechanobiology of YAP and TAZ in physiology and disease. Nat Rev Mol Cell Biol 2017 ; 18 : 758–770. [CrossRef] [PubMed] [Google Scholar]
  11. Chandorkar Y, Castro Nava A, Schweizerhof S, et al. Cellular responses to beating hydrogels to investigate mechanotransduction. Nat Commun 2019 ; 10 : 4027. [CrossRef] [Google Scholar]
  12. Kuo JC. Mechanotransduction at focal adhesions: integrating cytoskeletal mechanics in migrating cells. J Cell Mol Med 2013 ; 17 : 704–712. [CrossRef] [PubMed] [Google Scholar]
  13. Cole MA, Quan T, Voorhees JJ, et al. Extracellular matrix regulation of fibroblast function: redefining our perspective on skin aging. J Cell Commun Signal. 2018 ; 12 : 35–43. [CrossRef] [PubMed] [Google Scholar]
  14. Park D, Wershof E, Boeing S, et al. Extracellular matrix anisotropy is determined by TFAP2C-dependent regulation of cell collisions. Nat Mater 2020; 19 :227–38. [CrossRef] [PubMed] [Google Scholar]
  15. Jin T, Li L, Siow RC, et al. Collagen matrix stiffness influences fibroblast contraction force. Biomed Phys Eng Express 2016 ; 2 : 047002. [CrossRef] [Google Scholar]
  16. Ozcelikkale A, Dutton JC, Grinnell F, et al. Effects of dynamic matrix remodelling on en masse migration of fibroblasts on collagen matrices. JR Soc Interface 2017 ; 14 : 20170287. [CrossRef] [Google Scholar]
  17. Jaisson S, Desmons A, Gorisse L, et al. Vieillissement moléculaire des protéines : quel rôle en physiopathologie ?. Med Sci (Paris) 2017 ; 33 : 176–182. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  18. Achterberg VF, Buscemi L, Diekmann H, et al. The nano-scale mechanical properties of the extracellular matrix regulate dermal fibroblast function. J Invest Dermatol 2014 ; 134 : 1862–1872. [CrossRef] [PubMed] [Google Scholar]
  19. Qin Z, Fisher GJ, Voorhees JJ, et al. Actin cytoskeleton assembly regulates collagen production via TGF-β type II receptor in human skin fibroblasts. J Cell Mol Med 2018 ; 22 : 4085–4096. [CrossRef] [PubMed] [Google Scholar]
  20. Reed MJ, Ferara NS, Vernon RBB. Impaired migration, integrin function, and actin cytoskeletal organization in dermal fibroblasts from a subset of aged human donors. Mech Ageing Dev 2001 ; 122 : 1203–1220. [CrossRef] [PubMed] [Google Scholar]
  21. Tomasek JJ, Gabbiani G, Hinz B, et al. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 2002 ; 3 : 349–363. [CrossRef] [PubMed] [Google Scholar]
  22. Sandbo N, Dulin N. Actin cytoskeleton in myofibroblast differentiation: ultrastructure defining form and driving function. Transl Res 2011 ; 158 : 181–196. [CrossRef] [PubMed] [Google Scholar]
  23. Beningo KA, Dembo M, Kaverina I, et al. Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J Cell Biol 2001 ; 153 : 881–888. [CrossRef] [PubMed] [Google Scholar]
  24. De Pascalis C, Etienne-Manneville S. Single and collective cell migration: the mechanics of adhesions. Mol Biol Cell 2017 ; 28 : 1833–1846. [CrossRef] [PubMed] [Google Scholar]
  25. Yamada KM, Sixt M. Mechanisms of 3D cell migration. Nat Rev Mol Cell Biol 2019 ; 20 : 738–752. [CrossRef] [PubMed] [Google Scholar]
  26. Abreu-Blanco MT, Watts JJ, Verboon JM, et al. Cytoskeleton responses in wound repair. Cell Mol Life Sci 2012 ; 69 : 2469–2483. [CrossRef] [PubMed] [Google Scholar]
  27. Braverman IM, Fonferko E. Studies in cutaneous aging. I. The elastic fiber network. J Invest Dermatol 1982 ; 78 : 434–443. [CrossRef] [PubMed] [Google Scholar]
  28. Pellegrin S, Mellor H. Actin stress fibres. J Cell Sci 2017 ; 120 : 3491–3499. [CrossRef] [PubMed] [Google Scholar]
  29. Solé-Boldo L, Raddatz G, Schütz S, et al. Single-cell transcriptomes of the human skin reveal age-related loss of fibroblast priming Commun Biol 2020; 3 : 188. [CrossRef] [Google Scholar]
  30. Vallet H, Fali T, Sauce D. Le vieillissement du système immunitaire : du fondamental à la clinique. Rev Med Interne 2019 ; 40 : 105–111. [CrossRef] [PubMed] [Google Scholar]
  31. Goronzy J J, Weyand C M. Understanding immunosenescence to improve responses to vaccines. Nat Immunol 2013 ; 14 : 428–436. [CrossRef] [PubMed] [Google Scholar]
  32. Vukmanovic-Stejic M, Sandhu D, Seidel JA, et al. The characterization of varicella zoster virus-specific t cells in skin and blood during aging. J Invest Dermatol 2015 ; 135 : 1752–1762. [CrossRef] [PubMed] [Google Scholar]
  33. Jagger A, Shimojima Y, Goronzy JJ, et al. Regulatory T cells and the immune aging process: a mini-review. Gerontology 2014 ; 60 : 130–137. [CrossRef] [PubMed] [Google Scholar]
  34. Smithey MJ, Uhrlaub JL, Li G, et al. Lost in translation: mice, men and cutaneous immunity in old age. Biogerontology 2015 ; 16 : 203–208. [CrossRef] [PubMed] [Google Scholar]
  35. Zuelgaray E, Boccara D, Ly Ka So S, et al. Increased expression of PD1 and CD39 on CD3+ CD4+ skin T cells in the elderly. Exp Dermatol 2019 ; 28 : 80–82. [CrossRef] [PubMed] [Google Scholar]
  36. WHO. World health statistics 2020. monitoring health for the SDGs, sustainable development goals. Geneva : World Health Organization, 2020; Licence : CC BY-NC-SA 3.0 IGO. [Google Scholar]
  37. Vierkötter A, Ranft U, Krämer U, et al. The SCINEXA: a novel, validated score to simultaneously assess and differentiate between intrinsic and extrinsic skin ageing. J Dermatol Sci 2009 ; 53 : 207–211. [CrossRef] [PubMed] [Google Scholar]
  38. Krutmann J, Passeron T, Gilaberte Y, et al. Photoprotection of the future: challenges and opportunities. J Eur Acad Dermatol Venerol 2020; 34 : 447–54. [CrossRef] [Google Scholar]
  39. Fournet M, Bonté F, Desmoulière A. Glycation damage: a possible hub for major pathophysiological disorders and aging. Aging Disease 2018 ; 9 : 880–900. [CrossRef] [Google Scholar]
  40. Akdeniz M, Boeing H, Müller-Werdan U, et al. Effect of fluid intake on hydration status and skin barrier characteristics in geriatric patients: an explorative study. Skin Pharmacol Physiol 2018 ; 31 : 155–162. [CrossRef] [PubMed] [Google Scholar]
  41. Dobos G, Lichterfeld A, Blume-Peytavi U, et al. Evaluation of skin ageing: a systematic review of clinical scales. Br J Dermatol 2015 ; 172 : 1249–1261. [CrossRef] [PubMed] [Google Scholar]
  42. Dobos G, Trojahn C, Lichterfeld A, et al. Quantifying dyspigmentation in facial skin ageing: an explorative study. Int J Cosmet Sci 2015 ; 37 : 542–549. [CrossRef] [Google Scholar]
  43. Beylot C.. Vieillissement cutané. Vieillissement facial global : orientation thérapeutique. Ann Dermatol Venereol 2019 ; 146 : 41–74. [CrossRef] [PubMed] [Google Scholar]
  44. Trojahn C, Dobos G, Lichterfeld A, et al. Characterizing facial skin ageing in humans: disentangling extrinsic from intrinsic biological phenomena. Biomed Res Int 2015 ; 2015 : 318586. [CrossRef] [Google Scholar]
  45. Ayer J, Ahmed A, Duncan-Parry E, et al. A photonumeric scale for the assessment of atrophic facial photodamage. Br J Dermatol 2018 ; 178 : 1190–1195. [CrossRef] [PubMed] [Google Scholar]
  46. Laughter MR, Maymone MBC, Karimkhani C, et al. The burden of skin and subcutaneous diseases in the United States from 1990 to 2017. JAMA Dermatol 2020 ; 156 : 1–8. [CrossRef] [PubMed] [Google Scholar]
  47. Grandahl K, Olsen J, Friis KBE, et al. Photoaging and actinic keratosis in Danish outdoor and indoor workers. Photodermatol Photoimmunol Photomed 2019 ; 35 : 201–207. [CrossRef] [PubMed] [Google Scholar]
  48. Dean SM. Cutaneous manifestations of chronic vascular disease. Prog Cardiovasc Dis 2018 ; 60 : 567–579. [CrossRef] [PubMed] [Google Scholar]
  49. Yang M, Wu H, Zhao M, Chang C, Lu Q. The pathogenesis of bullous skin diseases. J Transl Autoimmun 2019 ; 2 : 100014. [CrossRef] [PubMed] [Google Scholar]
  50. Zouboulis CC, Gancevienne R, Aikaerini IL, et al. Aesthetic aspects of skin aging, prevention, and local treatment. Clin Dermatol 2019 ; 37 : 365–367. [CrossRef] [PubMed] [Google Scholar]
  51. Ganceviciene R, Liakou AI, Theodoridis A, et al. Skin anti-aging strategies. Dermatoendocrinol 2012 ; 4 : 308–319. [Google Scholar]
  52. Zhang S, Duan E. Fighting against skin aging: the way from bench to bedside. Cell Transplant 2018 ; 27 : 729–738. [CrossRef] [PubMed] [Google Scholar]
  53. Remoué N, Molinari J, Andres E, et al. Development of an in vitro model of menopause using primary human dermal fibroblasts. Int J Cosmet Sci 2013 ; 35 : 546–554. [CrossRef] [Google Scholar]
  54. Yun-Nan L, Shu-Hung H, Tsung-Ying L, et al. Micro-autologous fat transplantation for rejuvenation of the dorsal surface of the aging hand. J Plast Reconstr Aesthet Surg 2018 ; 71 : 573–584. [CrossRef] [Google Scholar]
  55. Yoneda M, Shimizu S, Nishi Y, et al. Hyaluronic acid-dependent change in the extracellular matrix of mouse dermal fibroblasts that is conducive to cell proliferation. J Cell Sci 1988 ; 90 : 275–286. [Google Scholar]
  56. Maisel-Campbell AL, Ismail A, Reynolds KA, et al. A systematic review of the safety and effectiveness of platelet-rich plasma (PRP) for skin aging. Arch Dermatol Res 2020; 312 : 301–15. [CrossRef] [PubMed] [Google Scholar]
  57. Rorteau J, Chevalier FP, Fromy B, Lamartine J. Vieillissement et intégrité de la peau, de la biologie cutanée aux stratégies anti-âge. Med Sci (Paris) 2020; 36 : 1155–62. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  58. Willyard C. How anti-ageing drugs could boost COVID vaccines in older people. Nature 2020; 586 : 352–4. [CrossRef] [PubMed] [Google Scholar]
  59. Jégou B. Le paradigme de l’exposome : définition, contexte et perspective. Med Sci (Paris) 2020; 36 : 959–60. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.